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TOMOGRAPHIC RECONSTRUCTION FOR 
X-RAY CONE-BEAM SCAN DATA 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

This application claims the bene?t of priority under 35 
USC 119(e) to US. Provisional Application No. 60/810,087, 
?led May 31, 2006, Which is incorporated herein by reference 
in it’s entirety. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

The US. Government has rights in the disclosed invention 
pursuant to NIH Grant No. EB093524 to Stanford University. 

BACKGROUND OF THE INVENTION 

The invention relates generally to medical imaging using 
X-ray computed tomography (CT), and more particularly the 
invention relates to reconstructing cone-beam x-ray scan data 
in tomographic imaging. 
Computed tomography is an established medical technique 

for visualiZing internal organs With high resolution. Both fan 
beams and cone beams (CB) of x-rays are employed in CT. 
3D image reconstruction from circular CB data has been an 

active research ?eld for the last tWo decades. While the exact 
reconstruction is achievable on the plane of the source traj ec 
tory (mid-plane) if the rotation angle is larger than at plus cone 
angle, it is impossible outside this central plane (off-plane). 
Many approximate algorithms have been developed for a 
circular CB scan. The ?ltered-backproj ection (FBP-based 
reconstruction, due to Feldkamp et al. (FDK), is by far the 
most popular algorithm mainly for its structure of one-dimen 
sional (l D) shift-invariant ?ltering. Although developed heu 
ristically as an extension of the exact fan-beam reconstruc 
tion, this algorithm is very close to the optimal in the sense of 
Without data extrapolation. It, hoWever, results in severe CB 
artifacts in the case of short scan, Which is very attractive in 
many applications, such as in the current C-arm CT. In order 
to handle the data redundancy, a simple but empirical modi 
?cation of FDK uses Parker’s Weighting (P-FDK), Which is 
accurate only for the mid-plane. Unlike the FDK algorithm on 
a full scan, this algorithm is not the optimal even in the sense 
of Without data extrapolation. Nonetheless, the structure of 
1D shift-invariant feature (for computation e?iciency), other 
researchers apply a mathematically exact algorithm to the 
short scan source trajectory. The derived algorithm, hoWever, 
does not necessarily achieve the optimal reconstruction. 

SUMMARY OF THE INVENTION 

The present invention proposes use of a tomographic 
reconstruction algorithm using shift-invariant ?ltering and 
backprojection With the maximum tomographic capability of 
a circular scan larger than at plus cone angle, When CB data is 
not truncated and data extrapolation is not alloWed. The 
reconstruction scheme includes a conventional FDK recon 
struction and a parallel reconstruction using differential back 
projection and 1D Hilbert transform to suppress the CB arti 
facts. Numerical results compare the performances of P-FDK 
and our algorithm, and shoW that the algorithm outperforms 
P-FDK generally. The reconstructed quality on a short scan 
using our algorithm is comparable to that on a full scan using 
FDK, although the data acquisition is reduced almost by half. 
Reconstructions on simulated noisy data manifest the stabil 
ity of our algorithm. 
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2 
The invention and object and features thereof Will be more 

readily apparent from the folloWing detailed description and 
appended claims When taken With the draWings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates a CB data acquisition geometry and coor 
dinate system. 

FIG. 2 illustrates the divergent to parallel conversion theo 
rem. 

FIG. 3 illustrates the tilted parallel projection and its sam 
pling pattern in the Fourier domain. 

FIG. 4 illustrates the redundancy function on the plane of 
005000, solid lines indicate the region boundaries. 

FIG. 5 illustrates the system geometry and the real and 
hypothetical coordinate systems. 

FIG. 6 illustrates the reconstruction of the modi?ed high 
contrast Shepp-Logan phantom on a short scan. Left column: 
using modi?ed FDK With Parker’s Weighting; Right column: 
using equation (22). The thin lines on the image indicate the 
location that the 1D pro?les are taken. 

FIG. 7 illustrates the reconstruction of the modi?ed high 
contrast Shepp-Logan phantom on a full scan, using FDK 
algorithm. 

FIG. 8 illustrates the noise-free reconstruction of the loW 
contrast Shepp-Logan phantom on a short scan. Left column: 
using modi?ed FDK With Parker’s Weighting; Right column: 
using equation (22). 

FIG. 9 illustrates the reconstruction of the loW-contrast 
Shepp-Logan phantom on a short scan. 

DETAILED DESCRIPTION OF ILLUSTRATIVE 
EMBODIMENTS 

Data Acquisition Geometry 
Consider ?rst a mathematical description of the recon 

struction problem, and tWo theorems that are important in our 
algorithm derivation. The conversion theorem from divergent 
projection to parallel projection provides a link betWeen these 
tWo imaging geometries, and the FBP-based algorithm on a 
tilted parallel full scan gives the optimal reconstruction if 
projection data is not truncated and extrapolation is not 
alloWed. A generaliZed version of the latter is also derived for 
later use. 

Herein, We use an equally spaced ?at panel detector With a 
?nite siZe. As shoWn in FIG. 1, The cone angle ym of this 
imaging setup is determined by the maximum angular cover 
age of the cone-beam in the u direction on the detector. During 
data acquisition, the x-ray source S rotates along the Z axis on 
the x-y plane, With a ?xed distance D to the center of rotation 
O, and the rotation starts at angle [35 and stops at [38, With total 
rotation of not less than n+ym(| [3e—[3sl ZJ'HYM). The detector is 
placed perpendicular to S0 for each projection. In the Carte 
sian coordinate system With the origin at O, the source posi 
tion is: 

1WD cos [5.0 sin m?enxr?ei <1) 

The object to be reconstructed is described by a nonnega 

tive function f(?), Where (?):(x, y, Z) is the Cartesian 
coordinate. It is also assumed that f is compactly supported 
and that the CB detector covers the Whole object from any 
vieW during data acquisition. In other Words, there is no 
truncation of the projection data. 

Denoting the distance from O to detector as Dod, then the 
relation betWeenp(u, v, [3), the real projection image andpv (u, 
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v, [3), the image on a virtual detector that is parallel to the real 
detector and passes through 0, is as follows: 

(2) 

For simplicity, We regard the virtual detector as the real 
detector, and reconstruct from pv hereafter. The subscript of pv 
is dropped Without ambiguity. 

The projection data on the detector are measured along tWo 
unit vectors in the Cartesian coordinate system, eu([3):(—sin 
[3, cos [3, 0) and é, ([3):(0, 0, l). The projection at angle on the 
detector is the set of half line integrals, Written as: 

Q 

Where s is the source position as de?ned in equation (1), and 
a 

r O is the unit vector of line integral direction, 

(4) 

A Conversion Theorem from Divergent to Parallel Projec 
tions 

The classic central slice theorem in 3D states that the 
Fourier transform of a 2D parallel projection image is the 
Fourier transform of the 3D object on the 2D slice that is 
normal to the projection direction. In parallel projection CT, 
it enables a simple analysis of the projection data plane by 
plane. This nice feature is lost in divergent projection CT, and 
in the reconstruction, either a rebinning step is involved or the 
projection data is analyZed using Radon transform theory. 
A relation betWeen parallel and divergent projections has 

been described by Edholm et al., and is summariZed beloW. As 
shoWn in FIG. 2, in the divergent projection, the x-ray source 
is located at (xO,yO,Dh), and pf(u, v) is the divergent projection 
image on the plane 2:0 through an object f. The origin is 

denoted O, and 60 is the angle betWeen S—C>) and the Z axis. 
Another projection image ph(u, v) is generated on the same 
plane from parallel rays through a hypothetical object h, and 

the parallel rays are parallel to the line S—C>) in the divergent 
a 

geometry. Let r :(x, y, Z), then the folloWing statement is 
true: 

If the coordinate system of the parallel geometry is related 
to that of the divergent geometry as 

. (5) 
f 

and, the hypothetical object h is generated as a transformation 
of the real object f, given by 

Dh — Zf (6) 

Dh M) =[ [mp 
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then, We have: 

0050 
pf(u, v) Where 

0 

c050 

@0800 _ (v — m2 + (u — m2 + D2 

The intuition of this theorem is as folloWs. Since in a 
divergent projection geometry, each slice of the object that is 
parallel to the detector has a uniform magni?cation factor 

as in equation (5)), stretching the object can convert divergent 
rays of the projection to parallel rays. This theorem relates a 
divergent projection to a parallel projection via constructing a 
virtual object, and the classic central slice theorem then 
comes back into play in the Fourier domain of the virtual 
object. 

HoWever, for this theorem to be useful in CT reconstruc 
tion, it is required that the hypothetical object h is the same for 
each vieW. According to equations (5) and (6), an equivalent 
condition is that, the source to detector distance D is ?xed 
during the data acquisition, and the rotation trajectory of the 
x-ray source and the detector is in a plane perpendicular to the 
Zf axis. While this requirement is satis?ed in some tomo 
graphic imaging geometries, such as tomosynthesis, it is not 
in the circular CB scan. Therefore, a novel approach using 
imaging geometry transformation is proposed to make 
Edholm’s theorem applicable, as Will be presented in section 
III. 

A FBP-Based Reconstruction on a Tilted Parallel Circular 
Scan 
As Will noW be shoWn, our CB reconstruction algorithm is 

closely related to the reconstruction on a tilted parallel circu 
lar scan. In FIG. 3 We shoW the parallel projection in the 
image and Fourier domain With a tilting angle 60 betWeen the 
projection direction and the axis of rotation. The parallel 
projection data p(u, v, [3) are measured along tWo unit vectors, 
eu([3):(—sin [3, cos [3, 0) and ev([3):(cos [3, sin [3, 0), on a ?at 
detector. It is assumed that the detector is equally spaced. 
HoWever, the derived formula also Works for non-uniformly 
spaced detectors, except that the projection image Would have 
to be multiplied by an additional term that compensates for 
the projection domain sampling density variation. According 
to the central slice theorem, the Fourier transform of each 
projection is the sampled slice of Fourier space data of the 
object that is perpendicular to the direction of projection. If 
the rotation angle is 275, two cones of missing data appear in 
the Fourier domain as shoWn in FIG. 3(b). 

Reconstruction on a full scan: AFBP-based reconstruction 

algorithm on a full scan has been developed by Pelc, Without 
using data extrapolation. In this case, not using extrapolation 
is equivalent to assuming that the data inside the unsampled 
cones are Zero. This algorithm is the same as the special 
non-tilted case When 

m: 
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except that an additional scaling term, sin 60, is included in 
the ramp ?lter kernel gO(y), Which comes from the oblique 
sampling along the Z direction. The reconstruction formula is 
revieWed beloW: 

and 

W is the cut-off frequency that depends on the resolution of 
the projection image. 

Reconstruction on less than a full scan: TWo factors act 
jointly in the Fourier domain sampling pattern, the sampling 
density along the radial direction and the redundancy func 
tion. The redundancy function is de?ned as the effective 
number of times that a frequency sample in the Fourier 
domain contributes in the backproj ection after ramp ?ltering. 
The above reconstruction scheme compensates for the sam 
pling density variation along the radial direction using a ramp 
?lter, but does not compensate for the redundancy function. 
The scheme Works Well on a full scan, since the redundancy 
function, Rf, is uniformly 2 outside of the missing cone and 0 
inside. However, as illustrated in FIG. 4, less than a full scan 
results in a non-uniform redundancy function R], and the 
reconstruction is sub-optimal. 

To generaliZe the reconstruction algorithm for less than a 
2n rotation, one possibility is to incorporate the redundancy 
correction into the ramp ?ltering, and the 1D ramp ?lter 
becomes a 2D ?lter. HoWever, restriction to 1D ?ltering is 
critical in our algorithm development, because of the conver 
sion from divergent to parallel geometry, and We propose a 
novel reconstruction scheme that requires only 1D ?ltering. 

Since the Hilbert transform reverses the sign of half of the 
input signal in the Fourier domain (besides the multiplication 
of j), taking the 1D Hilbert transform of the projection image 
along e” after ramp ?ltering and before backprojection results 
in the redundancy function Rh as shoWn in FIG. 4(0). The 
vector e” is also the direction of the 1D ramp ?ltering (see 
FIG. 3(a)). The region that has double sampling in RI is Where 
the signal cancellation occurs in Rh (region B, in both FIG. 
4(b) and FIG. 4(c)). Note that the sum of lRhl and RI is 
uniformly 2 outside the region of no samples (regionA), as We 
desire. Taking the absolute value of Rh can be done alterna 
tively by, after backprojecting the Hilbert transformed pro 
jection images for all vieWs, taking another 1D Hilbert trans 
form on the reconstructed volume along the direction 

@. = (814%), 004%), 0) 

in the 3D image domain. The sign of region C in Rh is 
reversed, and the multiplication of j that is associated With the 
1D Hilbert transform combines that of the previous Hilbert 
transform in the projection domain, and makes the resulting 
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6 
redundancy function positive real. Therefore, the generaliZed 
reconstruction formula can be Written as: 

where, [35 and [3e are the start and end angles, and operator H7» 

is the Hilbert transform along the direction ?O:(—sin 7», cos 

is the kernel of Hilbert ?lter: 

The function 521 is the reconstructed image using the for 
mula as in the full scan, With the redundancy function RZ 
uncompensated, 

(10) 

A 1 ?e . (11) fmmjf rpm-'4,VHBBmQOgOWWIMB 
s 

Where u, v, and g0 are de?ned as in (8). 
The function 522 is the reconstructed image obtained by 

applying the 1D Hilbert transform before backprojection, 
With a redundancy function Rh, 

Where gh, is the convolution of the ramp ?lter kernel g0 and 
the Hilbert kernel gh: 

(13) 

Since ramp-?ltering and the Hilbert transform can be com 
bined as taking the ?rst derivative, the above formula can also 
be expressed more simply as: 

(14) 
4,3 

As the angle range [38-65 increases, more cancellation 
occurs in f2; When (Be-[3S):2rc, f2 cancels completely and 
equation (9) is reduced to equation (8). 

Reconstruction on not Less than a Short Scan 

According to Edholm’ s theorem, each divergent projection 
can be converted into a parallel projection by constructing a 
hypothetical object. HoWever, converting the circular CB 
imaging geometry into circular parallel imaging requires that 
the hypothetical object is unchanged for each vieW. This is not 
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true in the CB imaging setup. There is no 2D slice of the 
object Where the magni?cation factor is uniform for all pro 
jection vieWs, While this property is critical for the application 
of Edholm’s divergent to parallel conversion theorem. 

A system With the required constant magni?cation factor 
can be generated by re-casting the standard single-circle CB 
imaging trajectory. We construct a hypothetical detector on a 
plane that is beloW and parallel to the mid-plane, at a distance 
of Dh. The mid-plane divides the object into 3 parts: upper 
half, loWer half and mid-plane. NoW We consider the recon 
struction of the loWer half only. Every divergent ray emitted 
from the X-ray source intersects the hypothetical detector, as 
Well as the real detector, if the virtual detector siZe is assumed 
to be in?nite. Therefore, the divergent projection image on the 
hypothetical detector has a one-to-one mapping With the 
loWer half of the projection image on the real detector. For the 
loWer half of the object, a reconstruction using the CB data of 
the real detector is equivalent to that using the CB data of the 
hypothetical detector. Remove the real detector, and consider 
the imaging setup using the hypothetical detector. NoW the 
same hypothetical object can be used for different vieWs such 
that the conversion theorem is applicable, according to equa 
tion (6). This CB scan is converted to a tilted circular parallel 
scan, and the previously derived reconstruction algorithm can 
be applied. By summing up all of the system transformations, 
We can derive a circular CB reconstruction algorithm. 

The main How of the algorithm derivation becomes 
straightforward, and it consists of the folloWing steps: 

Find the equivalent CB projection image on the loWer 
hypothetical detector from the loWer half of the CB 
projection image on the real detector; 

Convert the circular CB projection on the hypothetical 
detector into a tilted circular parallel projection, by con 
structing a hypothetical object; 

Reconstruct the hypothetical object using the derived 
reconstruction algorithm on a tilted circular parallel 
scan; 

Convert the reconstructed hypothetical object back to the 
real object; 

Repeat this for reconstruction of the upper half of the 
object, and the reconstruction of the mid-plane can be 
done either using the existing exact fan-beam recon 
struction formula, or as a limit case of the off-plane 
reconstruction. 

Note, hoWever, that these reconstruction steps only provide 
intuition and are used as a conceptual tool. The practical 
reconstruction scheme Will be proposed based on a more 
compact reconstruction formula, as We Will derive beloW. 

The Mathematical Derivation 

We ?rst derive the algorithm for reconstruction of the loWer 
half of the object. As shoWn in FIG. 5, the image on the real 
detector is p/(uf, v) and the corresponding image on the 
hypothetical detector is ph(uh, vh). The parallel projection 
image on the hypothetical detector after the divergent to par 
allel conversion is denoted as ph(uh, vh). The object We try to 
reconstruct is f(xf, yf, Z) and its hypothetical object is h(xh, yh, 
Zh). For clarity, the variables are used in a consistent Way; 
variables x, y, Z are the coordinates of the 3D image domain, 
While variables u, v are the coordinates of the 2D projection 
domain. Subscript f is used for the real object and detector, 
While subscript h is used for the hypothetical object and 
detector. 

The relationship betWeen p/(uf, v) and ph(uh, vh) can be 
found based on the geometry shoWn in FIG. 5(a). Assume 
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8 
point (uf, v) on the real detector and point (uh, vh) on the 
hypothetical detector are on the same ray emitting from the 
X-ray source S, then: 

The J acobian for variable change from (uf, v) to (uh, vh) is 

Note that vh>—D, since (uf, v) and (uh, vh) should be on the 
same side of the ray that emits from S, the absolute value in 
the Jacobian is dropped. Image ph can be obtained from pf, 
With intensity adjustment by the Jacobian: 

13213,, (18) 

According to Edholm’s theorem, this CB projection is 
equivalent to a tilted parallel projection With a tilting angle 

D 
00 : arctan— . 

Dh 

Note that the origins of the coordinate systems of the real and 
hypothetical objects are shifted vertically by Dh, as compared 
to those in the theorem derivation, and equations (5) and (6) 
need to be modi?ed to include Dh offsets on Zh and Zf Let 

?:(x, y, Z) and eZ:(0, 0, l), the hypothetical object h is 
related to the real object f as: 

(19) 

and 13 (uh, vh) can be computed as: 

0050 
mphwhs Vh) 

21 
EM” W1): ( ) 

Where, 
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-continued 
Dh 

0050 = 

For simplicity, We use rotation angle [3:0 in the above 
formula of p, i.e., the x-ray source is located at (—D, 0, Dh). 
The coordinate transformation of the rotation along the Zf 
axis Will be included in the ?nal reconstruction formula. The 
hypothetical object is reconstructed by applying the recon 
struction algorithm of tilted parallel projections (equation 
(9)). Note that, in the derivation of equation (9), it is assumed 
that the detector is equally spaced, While in a circular CB 
scan, the equally spaced real detector results in a hypothetical 
detector that is non-uniformly spaced. With the data sampling 
density change taken into account, the reconstruction algo 
rithm of B should be applied on 

Then the reconstructed real object is converted according to 
equation (19). 
By combining equations (18), (21), (9) and (19), the ?nal 

reconstruction formula is obtained as folloWs: 

s 

Where, operator H 

is the 1D Hilbert transform in the 3D image domain, along the 
direction 

@. = (814%), 004%), 0), 

as de?ned by equation (10); and, 

or, 
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10 

-continued 

(24) 

The subscript [3 stands for the coordinate transformation of 
rotation along the Zfaxis by [3; speci?cally, 

The derivation details are presented in the Appendix. 

The upper part of the object can be reconstructed similarly, 
and the reconstruction formula is the same as above, by sym 
metry. Assuming the original object is continuous in Zf, the 
mid-plane reconstruction can be found by taking the limit as 
ZfQO in the above formula, and it has the same form, since the 
reconstruction is also continuous in Zf. Equation (22) is there 
fore the ?nal reconstruction formula for the Whole object. 

The ?rst term of (22) is the conventional FDK reconstruc 
tion, and the second is a correction term that is reconstructed 
simultaneously to compensate for the non-uniformity of the 
redundancy function in the Fourier domain. This correction 
term is the 1D Hilbert transform of the reconstructed volume 
by differential backproj ection (DBP). It has the same form of 
?ltered backproj ection as the ?rst term except for a different 
?ltering kernel, and it can be calculated e?iciently. In a full 
scan [3e—[3s:2rc, only the ?rst term survives, and the algorithm 
reduces to the FDK reconstruction. 

The algorithm for redundancy compensation We proposed 
above using 1D ?ltering deserves a closer examination. In the 
image transformation from the projection on the real detector 
to that on the hypothetical detector, the shift-invariance prop 
erty is preserved only along the u axis. Therefore, convolution 
in ufmaps to convolution in uh, While convolution in vfresults 
in shift-variant ?ltering in vh. For the ef?ciency and accuracy 
of reconstruction, it is important to restrict the ?ltering opera 
tion to only 1D along the u axis. Another Way of understand 
ing is that, the hypothetical detector of an equally spaced real 
detector is also equally spaced along the u axis, but very 
non-uniformly spaced along the v axis. The Fourier transform 
in u can still be done e?iciently on the hypothetical detector, 
While the Fourier transform in v becomes a non-uniform 

Fourier transform, and very dif?cult to compute. Our pro 
posed algorithm avoids the ?ltering in v naturally. One less 
desirable aspect of our approach is the sloW decay of the 
Hilbert kernel, and special care must be taken in implemen 
tation as We Will discuss later. 
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Reconstruction Scheme 
Given equation (22), the practical reconstruction can be 

divided into the following steps: 
Step 1: Weight the projection data p/(uf, v) by 

25 
PfWf, Vf) ( ) 

Step 2.1: Convolve pW With a ramp ?lter kernel, g0. Obtain 
Ql as in equation (23). 

Step 2.2: Convolve pW With a ramp ?lter kernel and Hilbert 
kernel, ghr; or, take the ?rst derivative of pW. Obtain Q2 
as in equation (24). 

Step 3: Backproject Q1, With intensity adjustment 

along the rays; backproject O2 in the same Way to form a 
separate reconstructed object. 

(26) 

Step 4: Take the 1D Hilbert transform of 522 along 

Eh = (—Sin(¥), 004%), 0), 

and add the result to 5:1 to form the ?nal reconstructed object. 

f = i1 + 115% (f2) (27) 

Hilbert Transform 
The sloWly decaying behavior of the Hilbert kernel 

Will possibly result in inaccuracy in the reconstruction, and 
special care must be exercised in implementation. 
TWo lD Hilbert transforms are used in this reconstruction 

algorithm, one in the 2D projection domain, and the other in 
the 3D image domain. The discrete implementation of the 
?rst one does not hurt the accuracy, since the projection data 
can be Zero-padded before the convolution operation to make 
the ?nite integral very close to the in?nite integral. Also, the 
Hilbert transform can be combined With the ramp ?ltering as 
a ?rst derivative operation, Which is a local ?lter and the sloW 
decay problem disappears. The Hilbert transform in the 3D 
image domain, hoWever, induces signi?cant inaccuracy in the 
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reconstruction. The reconstructed volume is ?nite, so only a 
?nite length of data is available in the 1D Hilbert transform. 
On the other hand, mathematically, the reconstructed value 
before the Hilbert transform H 

BS+BE 
2 

is the 1D inverse Hilbert transform of an object 5c'2 Whose 
transformed hypothetical object has some data missing in the 
Fourier domain. Since such an object T2 is not compactly 
supported, the exact ?nite Hilbert transform as used in [14] 
and [15] is not applicable. If the discrete Hilbert transform is 
used With Zero-padding as an approximation to the in?nite 
Hilbert transform, the data truncation in the image domain 
results in severe artifacts in the nearby region, and the error 
decays as 

Where 1 is the distance from the reconstructed voxel to the 
truncated edge. 

It is uncertain Whether an exact ?nite Hilbert transform 
exists for our situation, or Whether it can be used ef?ciently. 
We therefore continue to use the discrete Hilbert transform 
With Zero-padding, and combat the induced artifacts by 
extending the reconstructed volume in the direction of the 
Hilbert transform. As a result, the artifacts are greatly 
reduced, although the total reconstruction time increases 
accordingly. Denote the extension ratio by K. Since the recon 
structed volume is only extended in the second term of equa 
tion (22) and DBP has the same structure as in the ?rst FDK 
term, the reconstruction time increases by a factor of ~ K. If a 
large extension of the reconstructed volume is used, the 
residual artifacts are mostly loW frequency, and the DC shift 
can be estimated and corrected from the fact that the voxel 
value outside the object is knoWn to be Zero. Ideally, the larger 
K becomes, the less artifacts appear in the reconstruction. 
HoWever, three factors restrict K from getting too large. The 
?rst is the cost of reconstruction time. The second is the 
increase of vieW aliasing artifacts. Since the image domain 
sample spacing increases linearly With the distance from the 
voxel to the center of rotation, the angular sampling rate also 
becomes insu?icient if the total number of vieWs are ?xed. 
The third factor is due to the divergent imaging setup. The 
density correction term 

in the reconstruction algorithm increases as the reconstructed 
voxel gets close to the x-ray source, and the reconstruction 
becomes more error-prone (the extreme case is the recon 
structed volume contains the x-ray source). Even With these 
restrictions, simulation results shoW the artifacts can be sup 
pressed effectively by proper choice of K. 
The details of the Hilbert transform implementation and its 

related artifacts reduction techniques Will be presented here 
inbeloW. 
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Data Suf?ciency and Reconstruction Optimality 
The reconstruction algorithm Was developed by ?rst ana 

lyzing the sampling pattern of the CB projection data in the 
Fourier domain of the transformed hypothetical object, then 
compensating for the sampling density non-uniformity by 
?ltering, and ?nally backprojecting. This reconstruction 
scheme uses all of the information in the Fourier domain 
region that are sampled by the CB projection, While the 
unsampled region is left as zeros and does not affect the 
reconstructed object. Under the condition that data extrapo 
lation is not alloWed, it seems that this algorithm exploits the 
maximum tomographic capability of a circular CB scan tra 
jectory. Note that an analytical study of the noise properties of 
the algorithm is not included in the present study, and the 
previous arguments are under the noise-free conditions. 

An additional detail of importance is that, hoWever, the 
interpretation of the sampling pattern is in the Fourier domain 
of the Whole object, and the above argument is true only if the 
region of interest (ROI) is the Whole reconstructed volume. 
On the mid-plane, When data is insuf?cient for exact recon 
struction, for example in a super-short scan With a rotation 
angle of less than at plus cone angle, it is more desirable that 
only the region With su?icient data is reconstructed exactly, 
While other regions might have large artifacts that are not of 
concern. Using the algorithm proposed here the best recon 
struction for the Whole object is achieved, but not necessarily 
for the small ROI. If the ROI is the Whole object, it usually 
requires that the rotation angle is not less than at plus cone 
angle, since only With this condition, exact reconstruction of 
the Whole mid-plane is possible. 
On the other hand, due to Tuy’s su?iciency condition, We 

knoW that the reconstruction for all the voxels on the off 
planes cannot be exact. A reasonable concern is that the 
optimality of the mid-plane reconstruction (exact reconstruc 
tion When data is suf?cient) might be sacri?ced in order to 
improve the off-plane reconstruction for the global optimal 
ity. Note, hoWever, that the 1D ?ltering feature of the pro 
posed algorithm makes the reconstruction of the mid-plane 
and offplanes uncorrelated, thus the optimum reconstructions 
are also achieved separately. Therefore, When data is su?i 
cient for midplane reconstruction, the algorithm reconstructs 
the mid-plane exactly. 

Summarizing the above, We conclude that if the projection 
data is not truncated and if no data extrapolation is alloWed, 
our reconstruction scheme achieves the optimal reconstruc 
tion When rotation angle is not less than at plus cone angle. 

Numerical Results 

We noW present several numerical results to illustrate the 
performance of our reconstruction algorithm. The recon 
struction on a short scan is compared With that on a full scan 
using the FDK algorithm and that on a short scan using the 
modi?ed FDK algorithm With Parker’s Weighting. Although 
We only focus on the short scan case, similar results can be 
found using a larger rotation angle. 
We use tWo simulated 3D phantoms, With projections com 

puted analytically to avoid discretization error in the forWard 
projection. One is a modi?ed Shepp-Logan phantom that has 
high-contrast objects inside to emphasize the cone-beam arti 
facts in the reconstruction. The other is the conventional 
loW-contrast Shepp -Logan phantom that is used to investigate 
reconstruction accuracy. Simulated poisson noise is also 
added in the projection images of the loW contrast Shepp 
Logan phantom to test the algorithm stability, and the noise 
level is chosen reasonably to match a clinical head scan. 
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Although our reconstruction scheme is not restricted to 

speci?c tomographic imaging geometries, We chose system 
parameters to model C-arm CT, on Which the full scan mode 
is not available currently. 

Implementation Details 
The system parameters are summarized in Table I. As 

de?ned in III-C, K is the extension ratio of the reconstructed 
volume of the second term in equation (22) as compared to 
that of the ?rst term, in the direction of the HA operation. Only 
the center part of the reconstructed volume of the second 
correction term Was extracted and added to the reconstructed 

volume of the ?rst term, to form the ?nal result. Using the 
system geometry as shoWn in FIG. 1, in the short scan mode, 
the gantry rotated clockWise from [3SI28O deg to [39:80 deg, 
With the total rotation angle [3MI2OO deg. Correspondingly, 
the ?nal lD Hilbert transform step Was taken along the —y 

direction, i.e. H“. 

TABLE I 

SIMULATION AND RECONSTRUCTION PARAMETERS 

Source to image distance (SID) 1150 mm 
Source to axis distance (SAD) 750 mm 

Detector size 512 x 512 

Pitch (Au, Av) 0.78125 mm 
Cone angle (ym) 20 deg 
Projection number Offllll scan (N1) 800 
Projection number of short scan (NS) 444 
Reconstructed volume 256 x 256 x 256 

Reconstructed voxel size (Ax, Ay, Az) 0.78125 mm 
Volume extension ratio (K) 4 

In the calculation of Q2, We chose to use the ?rst derivative 
operation instead of convolving pW With the kernel ghr. The 
derivative With respect to u Was computed using the 2-point 
formula: 

The 1D Hilbert transform Hat on the image Was applied in 
the Fourier domain using the apodization WindoW of Ham 
ming at the Nyquist frequency. The DC shifts due to the ?nite 
length of the available data Were ?rst estimated line by line 
from the mid-plane reconstruction, by averaging the ?rst and 
last 8 voxels on the ?nal reconstructed mid-plane along the 
direction of the Hilbert transform. If the reconstruction Was 
exact, We Would expect these voxels to be zero. The Whole 
reconstructed volume Was then corrected using the same DC 

shift map as on the mid-plane for all of the x-y planes along 
the z axis. 

The Shepp-Logan Phantoms 

The numerical parameters of the 3D Shepp-Logan phan 
toms are based on [16], and listed in Table II for reference. 

The parameter l,C (ly, 12) is the x (y, z) axis length of the 
ellipsoid, and 6x (6y, oz) is the offset of the center in x, both 
in mm. Angle 0 is the rotation angle in degrees along the z 
axis. The parameter uh(p.l) is the attenuation coef?cient of the 
high (loW) contrast phantom object, in mm_l. 
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TABLE II 

NUMERICAL PARAMETERS FOR SHEPP-LOGAN PHANTOMS 

lX ly 12 6x by 62 0 p11 pl 

0 0 0 69.0 92.0 90.0 0 2.00 2.00 
0 —1.84 0 66.2 87.4 88.0 0 —1.00 —0.98 

—22.0 0 —25.0 41.0 16.0 21.0 —72.0 —1.00 —0.02 
22.0 0 —25.0 31.0 11.0 22.0 72.0 —1.00 —0.02 
0 35.0 —25.0 21.0 25.0 35.0 0 0.50 0.01 
0 10.0 —25.0 4.60 4.60 4.60 0 0.50 0.01 

—8.00 —60.5 —25.0 4.60 2.30 2.00 0 0.50 0.01 
6.00 —60.5 —25.0 4.60 2.30 2.00 —90.0 0.50 0.01 
6.00 —10.5 6.25 5.60 4.00 10.0 —90.0 0.50 0.02 
0 10.0 6.25 5.60 5.60 10.0 0 —1.00 —0.02 
0 —10.0 —25.0 4.60 4.60 4.60 0 0.50 0.01 
0 —60.5 —25.0 2.30 2.30 2.30 0 0.50 0.01 

Reconstruction of the High Contrast Phantom 
FIG. 6 compares the reconstructions of the high contrast 

phantom on a short scan, using the modi?ed FDK algorithm 
With Parker’s Weighting (P-FDK) and our algorithm, equa 
tion (22). The left column shoWs that P-FDK results in severe 
CB artifacts on off-planes, especially around sharp transi 
tions. These artifacts are greatly suppressed in the right col 
umn, Where our algorithm is applied. Residual CB artifacts 
are mostly around sharp transitions in the Z direction, due to 
the condition that extrapolation for the missing Fourier space 
data is not alloWed. Although FIG. 6(a) is comparable to FIG. 
6(b), the reconstructions along the other tWo directions shoW 
that our algorithm outperforms P-FDK algorithm on overall 
image quality. Also note that a relatively small cone angle (20 
deg) is used in the simulations. If a larger cone angle is used, 
more CB artifacts Will appear in the reconstruction using 
P-FDK, and more artifact reduction should be obtained by 
using our algorithm. Reconstruction using the FDK algo 
rithm on a full scan is also presented in FIG. 7 as a reference. 
Our algorithm on a short scan has similar performance to the 
FDK algorithm on a full scan, although less data is acquired. 

Reconstruction of the LoW Contrast Phantom 
The noise-free reconstructions of the loW contrast phantom 

are shoWn in FIG. 8. The images are displayed With a very 
compressed WindoW to focus on the reconstruction accuracy. 
The magnitude of transition is much reduced in this phantom, 
therefore CB artifacts are not very obvious in the reconstruc 
tion using the P-FDK algorithm, and the Well knoWn unifor 
mity drop along the Z direction is due to the data insu?iciency. 
By equation (22), the images are reconstructed quite accu 
rately, While the uniformity drop is enhanced. Similar results 
have also been found by other researchers [6], and these 
artifacts are believed to be due to the missing data in the 
Fourier domain. As compared to the reconstruction by 
P-FDK, images using equation (22) also have some streak and 
ring artifacts, Which are induced by the 1D Hilbert transform 
and vieW aliasing, as discussed above. 

To test the algorithm stability, We also generated recon 
structions from noisy projection images. To match the statis 
tics of a clinical head scan, the noise is simulated as poisson 
noise With 300,000 photons per ray, and the value 1 in the 
phantom is modeled as Water at 80 keV. The attenuation 
coe?icient u] is multiplied by 0.01837 (0.01837 mm‘1 is the 
attenuation coe?icient of Water for 80 keV) When calculating 
photon counts at the detector. FIG. 9 shoWs that P-FDK and 
equation (22) are statistically similar in reconstruction per 
formance. The noise in the reconstructed volume is measured 
by considering the reconstructions in FIG. 8 to be the true 
values, and subtracting them from the corresponding voxel 
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values in FIG. 9. Using the P-FDK algorithm, the variance of 
noise in the center ROI (the middle half in all the x, y and Z 
directions) is 7.0988><l05, While it is 6.0353>< l 0-5 using equa 
tion (22). We believe the better noise property of our algo 
rithm comes from the equal Weighting scheme, although it 
has not been theoretically proven. Furthermore, in the recon 
struction using equation (22), the streak and ring artifacts are 
overWhelmed by statistical noise and cannot be easily seen. 

CONCLUSIONS 

We have presented a FBP-based reconstruction algorithm 
from CB data on not less than a short scan. The reconstruction 

formula consists of a conventional FDK reconstruction and a 

correction term that applies the 1D Hilbert transform on an 
object reconstructed by DBP. The readers might notice that 
this correction term is very similar to the 2-step reconstruc 
tion algorithm on 2D images that Was recently introduced by 
Noo et al. [14]. HoWever it is derived based on a different 

concept and used for a different purpose here. 

Since DBP has the same FBP-based form as the conven 

tional FDK algorithm and only 1D shift-invariant ?ltering is 
used in the computation, the proposed reconstruction can be 
done ef?ciently. As compared to the conventional FDK 
reconstruction, the computation time increases by a factor of 
~K, Where K is the reconstructed volume extension ratio 
along the direction of the ?nal 1D Hilbert transform, as 
de?ned in the paper. K needs to be chosen properly (4 in our 
implementations) for suppression of inaccuracy in the Hilbert 
transform. 

This algorithm is derived from a Fourier domain analysis, 
and makes the best use of acquired data. Therefore, the recon 
struction is optimal, under the condition that the projection is 
not truncated, data extrapolation is not alloWed and the ROI is 
the Whole volume. The last condition usually requires the 
scan rotation is not less than at plus cone angle in practice. 
Simulation results of a modi?ed high contrast Shepp-Logan 
phantom on a short scan shoW that this algorithm is able to 
greatly suppress the CB artifacts, as compared to the modi?ed 
FDK algorithm With Parker’s Weighting. Simulations using 
the loW contrast Shepp-Logan phantom With and Without 
noise also demonstrates that the image is reconstructed accu 
rately and stably, With improved noise properties. The Hilbert 
transform induced artifacts do not degrade the image quality 
When noise is present. 

The algorithm presented herein is attractive from a practi 
cal point of vieW. For a circular scan With rotation less than 275 
but larger than at plus cone angle, it should improve the image 
quality, as compared to other conventional reconstruction 
algorithms. Finally, We derived our algorithm by converting 
the divergent projection to a parallel projection, and then 
using the classic central slice theorem. This unique perspec 
tive is applicable in other scenarios Where the x-ray source is 
kept on a ?xed plane during the data acquisition. It might be 
also useful in the reconstruction algorithm derivation of the 
scans in those acquisition geometries. 
While the invention has been described With reference to 

speci?c embodiments, the description is illustrative of the 
invention and is not to be construed as limiting the invention. 
Various modi?cations and applications may occur to those 
skilled in the art Without departing from the spirit and scope of 
the invention as de?ned by the appended claims. 



US 7,409,033 B2 
17 

APPENDIX 1 

Derivation of Equation (22) 

Applying the reconstruction algorithm for a tilted parallel 
circular scan (equation (9)) on 

We have the reconstructive hypothetical object: 

Note that the coordinate system of the hypothetical object is 
shifted in Zh direction by Dh as compared to that used in 
equation (8), and offset Dh on Zh must be included in equation 
(33). 

Convolution kemals g and ghr, and variables [3, [3S and [3e 
are as de?ned previously. Operator Hkis de?ned as in equa 
tion (10). 

The ?nal reconstructed object f can be converted from h 
using equations (19) and (20). Denoting this conversion 
operation as T, due to linearity, We have: 

Denote the Hilbert transform as H. for a function q(X), We 
have: 

The above equation shoWs that scaling the variable before 
the Hilbert transform is equivalent to scaling after application 
of the transform. The proof is straightforward, and it is omit 
ted here. 

Note that for a ?xed Zf, operation T is just scaling the 
variables Xfand yf, and Hilbert transform 

is only on the X-y plane, therefore the second term of equation 
(34) can also be Written as: 

Twat/i (D2)) = 11mg TOD) (36) 
2 2 
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De?ne: 

f1:T(f11) 

f2:T(h2) (37) 

Equation (34) is: 

f = i1 + 11.65% (f2) (38) 

We simplify f1 ?rst, and f2 can be done similiary. 
Let 

1 39 
FEW!“ W1): r 7W1”! — '4, WJgWWM ( ) 

Substitute equations (18) and (21) into (39): 

* _ °° c050 , 0 1 d 

PhWm Vh) — loomsm OjPhWh — '4, Vh)g0('4) '4 

_ f’ D 
m (Vh + D>2 + (M — m2 + Di 

1 
jphwh — '4, WJgOWWM 

_ f’ D 
m (Vh + D>2 + (M — m2 + Di 

D(uh — 14) DD;, 
pf( vh +D ’ _ vh +D)g0(u)du 

According to equation (15), express pas: 

D 
pm. w = pz[—”—fDh. -D[—h +1]] "f "f 

_ f’ D 2 

’°° % + —M—fDh—u)2+D? "f "f 

"f 
— , d pf(uf + Dhu vf)g0(u) 14 

_ f’ D 
D00 00,, 2 D2 

[T] + Yfw — m2 +01) 

D D 40 
Pf('4f_"" vf>g0[-—hu] —h du= ( ) 

"f "f 

f D 3,, (m2 + (W - 102 +132) 

v 2 (41) 

PfWf —'4, vfhé’oU?dultpvl Jul) 
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Equation (40) results from changing the dummy variable u 
in the integral to 

and Equation (41) is due to the fact that gO is a homogeneous 1 
function of order —2, ie gO(ay):l/a2gO(y), aEiX. 

Plug (20), (32) and (33) into 

For simplicity, We use the subscript [3 for the coordinate 
transformation of rotation along the Zfaxis by [3. 
NoW, f1 can be computed by combining equations (19), 

(41), (42) and (43): 

Dh (44) 

Zf 

lie 

ft fl 
D 

Where, Ql is the convolution of the Weighted pf With the 
ramp ?lter kernal, as de?ned in equation (23): 

The above formula shoWs the reconstruction of fl is exactly 
the same as is given by the FDK algorithm. 

In the calculation of f2, since the Hilbert transform on the 
project data is also 1D along the u axis, the same derivation 
folloWs, except for the change of convolution kernal, and the 
second term of equation (34) is 

m 
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HALEQ (122%, yr, zf)) = (45) 

Where, Q2 is derived according to equation (12) or (14), and 
0 given in equation (24): 

or, 

6 

PfWf, Vf, m] 

The sum of f1 (equation (44)) and 

11mg (122) 
2 

(equation (45)) is the ?nal reconstruction formula as shoWn in 
equation (22), section III. 

What is claimed is: 
1. A method of reconstructing an image from detected data 

using an x-ray cone beam through a real object to be imaged 
to a real planar detector, the x-ray cone beam emanating from 
a source rotated less than a circle around the object, compris 
ing the steps of: 

a) detecting x-ray data at a plurality of positions of the 
source in a path of rotation around the object, 

b) Weighting the detected x-ray data according to position 
in the detector, 

c) convolving the Weighted x-ray data With a ramp ?lter 
kemal and backprojecting the convolved Weighted data 
to form a ?rst reconstructed three dimensional image, 

d) convolving the Weighted x-ray data With a ramp ?lter 
kemal and a Hilbert kernal and backproj ecting the con 
volved Weighted data to form a second reconstructed 
three dimensional image, 

e) taking a 1D Hilbert transform of the second three dimen 
sional image, and 

f) combining the ?rst reconstructed image and the Hilbert 
transformed second three dimensional image to form the 
reconstructed image. 

2. The method of claim 1 Wherein step c) is a Feldkamp 
reconstruction of the detected data. 

3. The method of claim 1 Wherein in steps d) a one dimen 
sional Hilbert transform is employed in the reconstruction 
algorithm. 

4. The method of claim 1 Wherein the source is rotated at 
least 180 degrees plus beam angle. 

5. The method of claim 1 Wherein detected projection data 
is not truncated and With no extrapolated data. 

6. A method of reconstructing an image from detected data 
using an x-ray cone beam through a real object to be imaged 
to a real planar detector, the x-ray cone beam emanating from 
a source rotated less than a circle around the object, compris 
ing the steps of: 






