a2 United States Patent

US007219327B1

(10) Patent No.: US 7,219,327 B1

Jacobs et al. 45) Date of Patent: May 15, 2007
(54) EXTENSIBLE DATA MODEL FOR USE IN AN 5,960,200 A * 9/1999 Eager et al. 717/147
INTEGRATED PLATFORM FOR CREATING 6,047,280 A * 4/2000 Ashby et al. 707/2
A DISTRIBUTION MULTIAPPLICATION 6,269,474 B1* 7/2001 Price 717/104
ONLINE PRESENCE 6,442,748 B1* 8/2002 Bowman-Amuah 717/108
6,480,860 B1* 11/2002 Monday 707/102
(75) Inventors: Joshua A. Jacobs, San Francisco, CA 6,536,037 B1* 3/2003 Guheen et al. 717/151
(US); John F. Shiple, San Francisco,
CA (US); Christopher R. Miller, OTHER PUBLICATIONS
Qakland, CA (US), Mahesh H t al., “The Semantic Data Model: A Modeling Mechani
3 . s ammer et al., € demantic Data vodel: oaeling Viechanism
]];yag;r;Jilln, San; OS.% CACCZE%[)J’SI)(.IH for Data base Applications”, Proceedings of 1978 ACM SIGMOD
B::Illar doLIlllslgen,Gaaingla:r San ’ International Conference on Mangement of Data, pp. 26-36, May
A r, Sal 1978.%
FranCISCO{CA (US); Chris Kiernan, IEEE Computer Society, “Bulletin of the Technical Committee on
San Francisco, CA (US) Data Engineering”, IEEE Computer Society, vol. 22, No. 3, pp.
1-54, Jul. 1999 .*
(73) Assignee: Affinity Internet, Inc., Ft. Lauderdale,
FL (US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner—Ted T Vo
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm—Beyer Weaver LLP
U.S.C. 154(b) by 1049 days. (57) ABSTRACT
(21) Appl. No.: 09/603,467
Data constructs and architectures are disclosed for providing
(22) Filed: Jun. 22, 2000 a foundation for an application-building system for enabling
a non-technical user to perform discrete tasks to build a
Related U.S. Application Data complete network-based application and maintain the same
(60) Provisional application No. 60/142,181, filed on Jul user experience throughout the application development. A
1.1999 ’ U ’ data model having an extensible underlying structure that
’ ’ can be used in a user-oriented application development
(51) Int.Cl system having a task-based architecture is defined. The data
G0;$F 9 /44 (2006.01) model is capable of allowing for extensible attributes such
(52) US.Cl 7'17/104. 717/107: 717/108 that the addition of a new data attribute can be made without
(58) Fi-el-d 0% Clas51ﬁcatlon Search ’ 717 /’l 01119 changing the underlying structure of the data model. Mul-
"""" 7171 47’ tiple applications making up the user-oriented application
S lication file f) b hi development system can access data from the data model.
ee application file for complete search hustory. Data stored in a database having the data model as an
(56) References Cited underlying structure can be reused by the task-based archi-

4,742,467 A *

U.S. PATENT DOCUMENTS
5/1988 Messerich et al. 717/114

Services

tecture for various applications.

16 Claims, 14 Drawing Sheets

CawlogForfolo

Marketing [__Repoing |

Task Viewer
App. Layer 208

Toolkit
206

7
XML / Oﬁb /
Layer 283// /

Data
Model 202

DATA SCHEMA/
REPOSITORY 102
* Relational Database

U.S. Patent May 15, 2007 Sheet 1 of 14 US 7,219,327 Bl

100

visual Desigp

(S
C

102

FIG. 1

US 7,219,327 B1

Sheet 2 of 14

May 15, 2007

U.S. Patent

aseqeieq |RUONE|3 Y 4

¢ 'Old

0L AYOlisOd3d
/YWIHDS V1va

/ST T T T T /
/ \A\mwﬁiﬁ
20T 19pOW / TN
e 0O /
/ /
e e e 0oz 19ke
Wwioo |
_ YIMIIA NSYL 80z 1ake7 ddy
JOMILA YSe

® o e
_ Bunioday _ _ bunayiew _
[eomuwo)y | [oijopso g/Bojeres |
_ mco_umu_c:EEou_ _ Buipping au s _ 01z 1aheq
$3OAIB S

US 7,219,327 B1

Sheet 3 of 14

May 15, 2007

U.S. Patent

80¢ 901V1VD

N
/7 . \
[L1DNYLSNOD
W3ILSAS |

\ man g

4IN14dVd vie

—

/
Lo\
\Pu:mhm20uT\\/
. $0o€ W3ILSAS
€ "Did \ MIN , yoie
~

—

00t 13dOW V1vd

US 7,219,327 B1

Sheet 4 of 14

May 15, 2007

U.S. Patent

A

Y

201] 1300W V1va

€113r90 Y1va
T1D3rg0o v1va \: viv
1123rdo vivda >

4374
I=

—
N~—

\

YW3IHDS vivd

(S)LD>3rao v.iva

80V —) _ 0LY DID01 ADN3IAN343d

1537490 13dow

90V
«—L

S3IDON3IHI4IYd l\/.vo_v
NWNIO0D S31ngi¥lLy

S3LNgiYyliv 318ISNILXT

' HIGWNN INOHd

$534QQayv
JWVYN SS3NISNg
180N

S3iNngiyLly 43Ixid

oov

¥ "Ol4

153rgo vivd

US 7,219,327 B1

Sheet 5 of 14

May 15, 2007

U.S. Patent

S "Dl

AI#om

173r80 11380 17380
1aNvd 13NVd 13NV d
103reo 103r80 153780
1INV d 13NV d 13NV d
153180 153780 153780
13INVd 13NV d 265 -1 "73nvd

l\)
_ 20s _
N 3ININD3S Z 3ON3IND3S L 3ININD3IS
MSYL 005

US 7,219,327 B1

Sheet 6 of 14

May 15, 2007

U.S. Patent

_
019 \/_/n_\ _
| _ e 209
| ! |]auediuaun)d |
L. . e e e —
| _ $|0QU0
_ uoibay wio4 | JIBMBIA N Se]
a05 —RL 19MaIp yse] |
Ve _
UoneWIoJU| se |
P
09 \ «/
009

US 7,219,327 B1

Sheet 7 of 14

May 15, 2007

U.S. Patent

0zs 818
[44: JSMIIA 1517 918
Noser| |ioued veer| | ser
908 08 18
((sse|) L
uond3|j0)
|00 L p10339 Y anqim
8 "Ol4 6oy 03U sy2ay aumy
wawod)| |ixajuoy| [SUOD
808
vi8 08 oL8 q
90¢
] S (001
L Ol
804 90, v0L [41)2
CRINERS 9JIAI9 S CRITNEYS puipjing
adswwod| | bojee) UONEIIUNWWO D EES
ESITNELS __W__ NS
\ bunioday suonIBRS [bupaxyew
N_.mu\ ./.O—N

oE\ wo>doy SauIpm

U.S. Patent May 15, 2007 Sheet 8 of 14 US 7,219,327 Bl

BUILD AN E-COMM
WEB SITE
(PHASE 1)

REGISTER A WEB ADDRESS/ —" 1902
URL

Y

SELECT SITE COLOR SCHE ME,
LAYOUT, AND FONTS ~— 904
CREATE AND EDIT
A HOME PAGE 906
A 4
CREATE AND EDIT A 908
MAP PAGE
CREATE AND EDIT A
CUSTOMER CONTACT PAGE ~— 910

FIG. 9A

U.S. Patent May 15, 2007 Sheet 9 of 14 US 7,219,327 Bl

BUILD AN
ONLINE CATALOG
(PHASE 2)

CREATE CATEGORY 912
PAGES

Y

CREATE AND EDIT

CATALOG ITEMS ~— 914
UPLOAD PICTURES
OF ITEMS SHOWN IN CATALOG [~ 1916
\
CREATE AND EDIT o913
A CATALOG FRONT PAGE
REARRANGE ORDER OF
ITEMS ON CATEGORY PAGES ~— 920

FIG. 9B

U.S. Patent May 15, 2007 Sheet 10 of 14 US 7,219,327 Bl

ACTIVATE
E-COMM FUNCTIONS
(PHASE 3)

SIGN UP FOR A 02>
MERCHANT ACCOUNT

A\ 4

PREPARE SHOPPING CART

CHECKOUT MESSAGES ~— 924
FILL OUT SHIPPING
RATES TABLE ~— 926
4
SET UP SALES TAX TABLE —" 1928
Y
PREPARE MERCHANT
POLICY ~— 930
934
S v
CCU%%/RACETR HAS MERCHANT ACCOUNT 932
?
USTOMEI BEEN APPROVED 1

FIG. 9C

U.S. Patent

908

May 15, 2007

CREATE AND
EDIT A MAP PAGE

Sheet 11 of 14

US 7,219,327 B1

CREATE A MAP PAGE
INTRODUCTION PANEL

~—"""1002

USER
ENTERS HAS USER ENTERED 1004
ADDRESS ADDRESS BEFORE?
l Ty
A
CHOOSE
LAYOUT PANEL 1008
A 4
SPECIFY MAP PANEL k1010
v
SPECIFY DIRECTIONS
PANEL ~ 1012
A /
EDIT MAP PAGE IF
" 21014

DESIRED

Y

FIG. 10

US 7,219,327 B1

Sheet 12 of 14

May 15, 2007

U.S. Patent

st ordasbig

UGI LI
13410 pue SUDI}IAIP IN0A AG PaMO||0) 'PIOq Ut MOjaq Sleadde aupeay Suoijasip
N0 A 10|02 J0 Jeq %31y} e Jaao pase|d 'afed ay) jo doy sy} je sieadde ssaippe N0

“UDIJRULIGIUI 13410 pue SUoIdaNp Inok £g pamo|jo) 'ssaippe nof Japun sieadde
aulpeay pjog v 'sauy Uiy} om} usamiaq ‘sbed ay) Jo doy sy je sieadde ssaippe Inoj
S3ul| USaM)AY SSAIPPY

i ‘plog w1 sieadde auipeay
Jno A "aulj 8y} mojaq dew nok jo ya| 8yl o} seadde |x8) pue BUIPESY SUOIIIBAIP INO A "auY
ulyi e Aq pajesedss "dew inoA asoge abed ayp jo jybu doy ay) e sieadde ssaippe o

m Wby 0 ssaippy E
vo__\\\

‘nofe] e 3ag

No——u\

ok aiaym nok moys sainpid ay; ul saul aejq pue Aelb sy “ebed dew unok ioj sinode) a|q

-abed paysiuy ay) uo seadde |Im Spiom

1ss0d Mmoys mojaq sainjaid ay]

inofej e yo1g

Vil "Sid

US 7,219,327 B1

Sheet 13 of 14

May 15, 2007

U.S. Patent

RIS

gil "9id

T d RERTG | FITITS TS TR passesay HYDty)Y ‘wed daisdia DOOZ 6081

ar0ge 'suong

» 10+ 3yl ¥23 30 ‘dew By}
QPISAQ 1BPIS YL UO 4D
ayj 8Buzya 'jno pue uy
dew Inod wooz of

-ds1s 1xau ay) a1 ob a) anuuey asooy)

asoyy
nok onaanp BY} U 19148381 {|m dew ok pue “dew ay} 0] 1X8U Joie] aY)
ue azuo 71 'uo 05 pue ‘{S) YINOS "(IN) 1S YuaN ' (N) yuop "sidwexa 163

6upmooy “woReIIp @ as0oyd ‘dews 8y JuBLOBI Of
i} T PLLL —~— BT
SRR 0F PAfang N
(oA W00Z -.wu.m._.u.oﬁ hoiied
_ Eiwy
i
W
L7 oy
1 =
artil ¥
i U8
G
il z
i
-
L i
2

1382 eye1 (v 50Buey3 IN0A N0 WaoZ

lEs2P5Y, 2005

oLt K ‘gbed gy ysyand nok uaum

10 °U1 U092 'Y Jejuadal Kew nok aauessadde e s dew ay) afiueya o) e p0k)

*a18y 912843 NOA MAIA BY1 98¢ A3Y) 1aye Aiaallaelal dew 3yi Jejuadal pue ul wooz

0} 31q€ 9Q U] j[I SIBILCISNT N0 K "} MAIA SIWDISAD MNOK 3w} ISIy BUY pakejdsip aq jim cew 10K MOy aPLIBP LNOA Bi5H

[RRTE R

asueseadile s dew inof aesry

~wo> deisbig

US 7,219,327 B1

Sheet 14 of 14

May 15, 2007

U.S. Patent

O1L"Oid

“PRAASYY LD 1w w00 dNistig (OOT-0001S

dars xau ay) 0) of 0] anusuo) asaoyy |

210\ 05 0p ‘0bed dew 1ank) UORTULIOU) BIDW Ppe Of 8[| pnok)

[
."sopw oMt BAIQ “Qioyskeg U0 WBIY WN) “WXS PIEASINGE AUBWBYY 6yl 0} YINaS 10L Aemubi axey, "ejdwexa oy
i ‘a1ay SUSHIBNP 100K ppy

LIN0S (01 KemyfiH Lioig SU0IANQ, "SidwiEna 104 |
suoyaanp ook so

; ozLL ~i_

el

|

suondIY] © 5u9133Hp pus dep] | DTN

.Eou,dwamo_m_

US 7,219,327 Bl

1

EXTENSIBLE DATA MODEL FOR USE IN AN
INTEGRATED PLATFORM FOR CREATING
A DISTRIBUTION MULTIAPPLICATION
ONLINE PRESENCE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority from U.S. Provi-
sional Patent Application No. 60/142,181, filed Jul. 1, 1999,
the entirety of which is incorporated herein by reference for
all purposes. The present application also relates to com-
monly assigned, copending U.S. patent application Ser. No.
09/602,576, concurrently filed herewith, for AN INTE-
GRATED PLATFORM FOR DEVELOPING AND MAIN-
TAINING A DISTRIBUTED MULTIAPPLICATION
ONLINE PRESENCE, the disclosure of which is incorpo-
rated herein by reference in its entirety for all purposes.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to computer net-
work-based application programming, design, and mainte-
nance. More specifically, it relates to data constructs and
methodologies for creating online, multiuser applications
based on a single, uniform data model.

2. Discussion of Related Art

As the Internet and the World Wide Web grow and attract
more and more viewers and content-providers, there has
been a trend towards customization and, more broadly,
user-empowerment. This movement in the online arena,
whether on the Internet or an enterprise-based network, is
marked by enabling users to create, customize and maintain
their own presence on the network. One example of this is
the proliferation of customized Web home pages for indi-
viduals that contain only information of specific interest to
an individual and that can be edited by that individual. A
broader example of user-empowerment is giving an online
user or entity the ability to create a full-scale, customized
Web site. Although users, primarily businesses, have been
creating their own Web sites for years, not surprisingly, they
have done so by hiring consultants and Web developers to do
the work for them. However, as online application devel-
opment reaches new levels, many of the initial technological
and financial barriers are breaking down.

There are now available to online users several tools and
wizard programs that allow them to build their own online
applications, almost entirely without the help of Internet
programmers or Web-site developers. A wizard is a set of
steps (presented as separate screens/panels) that automate a
task by asking users questions (with between one and ten
questions per screen/panel). Many users now create their
own home pages or complete Web sites using software from
various vendors, such as popular software from Symantec
Software Corporation and Microsoft Corporation, to name
just two. Another trend that will inevitably grow more in the
future is entities, typically commercial entities, building
their own Web site to conduct online business or electronic
commerce (“e-commerce”). Presently, there are providers
that enable these entities to build their own commercial Web
site, but there are still a number of drawbacks.

While advances in online application development have
allowed users to create their own Web sites, little attention
has been given thus far to forming a comprehensive, inte-
grated, or complete solution and to providing a uniform user
experience. E-commerce or e-business sites have increased

20

25

30

35

40

45

50

55

60

65

2

dramatically in complexity, adding functionality such inte-
gration with customer databases, inventory management,
and supply-chain management. Presently, no solution pro-
vides a platform for the continual advancement and integra-
tion of new e-business capabilities into a single framework
with common data and user experience. In other words, no
single package or toolkit currently available gives a user the
ability to create a fully functioning commercially-enabled
Web site. Nor do the toolkits provide a uniform user inter-
face or, more broadly, user experience with which the user
can become familiar and efficient.

The numerous services needed to build a complete online
presence have disparate user experiences, thereby prevent-
ing any significant leveraging of skills users gain from a
consistent user interface. Presently, users must register with
each of the different Web sites where each site provides a
different feature or function needed for the user’s online
presence. For example, a user may use a catalog building
application tool from one provider and have to use a
reporting or marketing tool from another provider, and then
have to address communication between these and other
components of the Web site. In another example, a user has
to use several different programs such as a Web page
development program, a graphics program, a database pro-
gram, put them together, and then load it up to an ISP. Lack
of uniformity in the user experience and the need to go to
different providers are major barriers to entities building and
maintaining their own online presence.

Although various application development models exist,
none are entirely well-suited for enabling an entity to build
its own “industrial-strength” network-based application,
such as a comprehensive and commercially-enabled Web
site. One such model can be referred to as a unified data
model or “whiteboards” developed originally at MIT. This
model used software agents to gather data and was used for
single-application and multiple users. Many applications
developed for online use are inherently multi-application
(e.g., creating a catalog, reporting, site-building, etc.).
Another application development model was used with the
Newton hand-held digital organizer developed by Apple
Computer Corp. The tool developed for the Newton enabled
the execution of multiple applications but was geared for a
single-user space. Naturally, any single-user model is not
well suited for online application development. Further-
more, neither model supported a distributed architecture in
which various components of the application reside at
different places on the network.

Therefore, it would be desirable to have an integrated
platform having a reactive architecture that allows a user to
create a distributed, online application that can perform as a
complete solution to a goal or problem. The platform should
provide for single registration and have a seamless, uniform
user experience that fosters leveraging skills learned from
previous sessions. It would also be desirable for the platform
to be distributed, and be multi-user and multi-application.
Furthermore, it would be desirable for the architecture to be
task-based and to provide for a uniform expression of data,
which can be shared and is extensible.

SUMMARY OF THE INVENTION

To achieve the foregoing, data constructs, models, and
architectures are disclosed which provide a foundation for
an application-building system for enabling a non-technical
user to perform discrete tasks to build a complete network-
based application and maintain the same user experience
throughout the application development. For example, the

US 7,219,327 Bl

3

architectures and data constructs can be used to construct
and maintain an Internet or online presence capable of
handling e-commerce transactions or build a customer rela-
tionship management system.

In another aspect of the invention, a data model having an
extensible underlying structure that can be used in a user-
oriented application development system having a task-
based architecture is defined. The data model is capable of
allowing for extensible attributes such that the addition of a
new data attribute can be made without changing the under-
lying structure of the data model. Multiple applications
making up the user-oriented application development sys-
tem can access data from the data model. Data stored in a
database having the data model as an underlying structure
can be reused by the task-based architecture for various
applications.

In one embodiment, the data model is capable of abstract-
ing data and aggregating or collecting data over an inte-
grated common platform in a way that allows the data to be
authored and distributed. In another embodiment, the data
model performs as a uniform and shared data source for all
users containing domain-specific data such that each user
can leverage the shared data source.

In one aspect of the present invention, a data model
having a structure for dynamically configuring and sharing
existing application data from multiple systems is described.
The data model contains a central or hub system containing
a unique identifier. The hub system is accessible by the other
systems using the unique identifier. The data model includes
a first set of multiple data objects containing application data
for managing tasks and a uniform user interface for creating
an application. A data object has fixed attributes and exten-
sible attributes. A second set of data objects representing an
additional system is dynamically added to the data model
and done so without altering the structure of the data model.
The additional system can share existing application data
with the hub system and the first set of data objects using the
unique identifier.

In one embodiment the data model includes a first set of
multiple model objects for containing the first set of multiple
data objects. The model objects include a data input means
and verification methods for verifying the application data.
The model objects contains dependency logic for operating
on the first set of data objects. In another embodiment
additional application data is added to the data model and
dynamically configured as one or more tasks are completed.
In yet another embodiment, the data model has an Extensible
Markup Language (XML) layer thereby allowing for exten-
sion of data objects.

In another aspect of the present invention, an extensible
model object for containing and manipulating application
data in a data model is described. The extensible model
object contains one or more data objects for persistently
storing application data relating to the model object where
the application data includes fixed attributes and extensible
attributes. The model object also includes a data manipula-
tion logic component for manipulating the application data
in the one or more data objects, where the model object is
a logical interface between an application-building system
and an end-user. The extensible attributes of a data object
can include previously undefined attributes that are specific
to an application.

In yet another aspect of the present invention, an appli-
cation-building software architecture for enabling multiple
users and multiple services to use a data model having a
framework via a wide area network is described. The
platform enables a user to extend the data model by adding

20

25

30

35

40

45

50

55

60

65

4

a previously undefined data type in a dynamic way without
having to alter the framework of the data model. In addition,
the multiple services can use the previously undefined data
type and another user can use an extension to the data model
created by the first user.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood by reference to
the following description taken in conjunction with the
accompanying drawings in which:

FIG. 1 is an illustration showing numerous layers of the
platform in accordance with one embodiment of the present
invention.

FIG. 2 is an illustration of components in a task-based
architecture of an integrated platform in accordance with
one embodiment of the present invention.

FIG. 3 is an illustration of a data model for an e-commerce
enabled Web site in accordance with one embodiment of the
present invention.

FIG. 4 is a block diagram of a data object, a model object,
and a data schema in accordance with one embodiment of
the present invention.

FIG. 5 is a block diagram showing a relationship among
tasks, sequences, and panels.

FIG. 6 is a screen illustration showing components of a
task viewer application in accordance with one embodiment
of the present invention.

FIG. 7 is a block diagram showing various services used
for creating and maintaining a commercial online presence
in accordance with one embodiment of the present inven-
tion.

FIG. 8 is a block diagram showing various tools for use
in an application-development system in accordance with
one embodiment of the present invention.

FIGS. 9A, 9B, and 9C are flow diagrams illustrating a
task-based approach to building a particular application,
namely, an e-commerce Web site, in accordance with one
embodiment of the present invention.

FIG. 10 is a flow diagram of a process of creating and
editing a map page in the application building process in
accordance with one embodiment of the present invention.

FIG. 11A is a screenshot showing three map page layout
options from which a user can choose.

FIG. 11B is a screenshot showing options available to a
user for completing a map page layout task.

FIG. 11C is a screenshot showing how to complete a user
direction layout task.

DETAILED DESCRIPTION

Reference will now be made in detail to a preferred
embodiment of the invention. An example of the preferred
embodiment is illustrated in the accompanying drawings.
While the invention will be described in conjunction with a
preferred embodiment, it will be understood that it is not
intended to limit the invention to one preferred embodiment.
To the contrary, it is intended to cover alternatives, modi-
fications, and equivalents as may be included within the
spirit and scope of the invention as defined by the appended
claims.

The present invention describes a platform and data
model that allows non-technical users to develop online and
network-based applications. The platform can be viewed as
an operating system which facilitates self-development of
online and stand-alone applications. The data model com-
ponent, which can also be viewed as a component of the

US 7,219,327 Bl

5

platform, allows for the collection, aggregation, and mod-
eling of user data which leads to efficient utilization and
scaling of the data, such that the data can be shared across
a high volume of users. The aggregated data, typically from
many users, creates a data source which can be shared and
leveraged by all the users. The data component or model is
also robust in that it is easily extensible, flexible, and
uniform.

The data model provides a foundation for an integrated
platform on which a task-based architecture and methodol-
ogy is implemented. This task-based architecture and meth-
odology for building applications facilitates using a large
data pool based on the data model. The data model and
task-based architecture also allow for a uniform user expe-
rience, as well as other advantages described below. Similar
to a conventional operating system, in order for the inte-
grated platform to function, numerous applications and tools
are needed. These applications and tools allow a user to use
the data model and the task-based architecture to create a
comprehensive, multiuser, online application, such as an
e-commerce Web site, a catalog or portfolio-oriented Web
site (for service-based online businesses), a customer rela-
tionship management application which allows a user to
manage various types of customer relationships online,
marketing and related business-acquisition tools, and differ-
ent types of customer communication applications. In these
types of multiuser, online applications, the user is typically
an online merchant or small business owner (“SBO”) desir-
ing an online presence.

The integrated platform of the present invention can be
described generally as a series of layers, again, much like an
operating system. FIG. 1 is an illustration showing numer-
ous layers of an integrated platform in accordance with one
embodiment of the present invention. At the bottom of a
platform 100 is a core data repository or data schema 102
which physically stores data for a one or more data models.
A data model, described in greater detail in FIGS. 3 and 4,
represents an arrangement or configuration of data in terms
of fixed and extensible attributes as well as logic for oper-
ating on the data. For purposes of illustrating the described
embodiment, data arranged in the data model can be, for
example, business data and data relating to users, where a
user is an SBO or online merchant. The data model has a
unique configuration that facilitates the collection and aggre-
gation of data and the addition of previously undefined data
attributes, referred to as extensibility. Data schema 102
physically stores the data used by the applications, tools, and
functions in conjunction with the task-based architecture.
Data schema 102 can store data in the form of a relational
database, flat files, a multidimensional database, or any other
appropriate data storage schema.

Immediately above data schema 102 is a back-end code
application layer 104. In the described embodiment, appli-
cation layer 104 contains numerous application modules and
programs that run behind the scenes of the user experience;
that is, what the user sees and does when using the integrated
platform. Above back-end code application layer 104 is an
interface layer 106 which is the first layer of the system
front-end. In the described embodiment, the front-end, con-
sisting of interface layer 106, an information architecture
layer 108, and a visual design layer 110, is loosely tied to
back-end code application layer 104. Interface layer 106
provides a container mechanism, usually implemented as an
HTML form element, which wraps data for transfer between
application layer 104 and interface layer 106. Interface layer
106 connects layer 104 with an information architecture
layer 108 and a visual design layer 110.

20

25

30

35

40

45

50

55

60

65

6

Information architecture layer 108 maps a user’s “mental
model,” i.e., the user’s knowledge domain, to data reposi-
tory 102. Layer 108 also maps the user’s mental model of a
task-based interface to interface layer 106 and application
layer 104. Information architecture layer 108 models the
user experience and embodies a task-based architecture by
implementing and reinforcing various models and flows for
each task within the system, described below.

Interface layer 106 and application layer 104 translate the
instructions provided by information architecture layer 108
and present the desired screens/panels to the user. Through
this process, the technicalities and expertise normally
needed to complete otherwise highly technical tasks are
abstracted away. A visual design layer 110 rests on top of
information architecture layer 108 and implements a user
experience by presenting the actual interface that the user
uses to enter data into the system. Visual design layer 110
implements the user interface for the task-based architec-
ture.

Layers of integrated platform 100 that are part of the
task-based architecture and, thus, particularly relevant are
information architecture layer 108, back-end code applica-
tion layer 104, and data schema 102, or, more specifically,
the data model embodied in data schema 102. A more
detailed view of the last two layers is shown in FIG. 2.

FIG. 2 is an illustration of components in a task-based
architecture of an integrated platform in accordance with
one embodiment of the present invention. At the bottom is
data schema 102 which physically stores the data. Operating
on data schema 102 is a data model 202 that configures and
handles data stored in data schema 102. As mentioned
above, a data model facilitates collecting, storing, and shar-
ing information from a user. The data are modeled in such
a way that they allow for efficient reuse of data already
entered, in a way that is intuitive to and expected by the user.
Data arranged in data model 202 are dynamically configured
as the user completes various tasks. Data are expressed
uniformly and can be shared by disparate and newly added
applications and modules in the system. In the described
embodiment, data model 202 has an Extensible Markup
Language (XML) layer 203 that further facilitates the flex-
ibility of data model 202 and its ability to collect and output
data in a distributed manner. Thus, data model 202 allows
for the abstraction, aggregation, and modeling of data in a
common integrated platform and enables the task-based
architecture of the present invention. Data model 202 is
described in greater detail in FIG. 3.

In direct communication with data model 202 is a toolkit
layer 204 containing numerous toolkits 206. Toolkits 206 are
modules, systems, and frameworks that perform core func-
tions of the application-building system of the present
invention. The toolkits necessary for implementing the task-
based architecture of the integrated platform are described in
FIG. 8.

Operating in conjunction with toolkit layer 204 is a task
viewer application layer 208. The application-building sys-
tem of the present invention can be implemented by a
service provider who manages the integrated platform, the
data model, data repository, and other components of the
system. The application-building system is a collection of
database-driven applications. One such application is a task
viewer application. A task viewer implements an interface
for users to create relevant data, such as business data for an
SBO. The task viewer provides a core set of services
enabling a uniform user experience. These services include
the delivery of sequential forms and screens for gathering
and formatting information, information validation, and

US 7,219,327 Bl

7

information storing services. The primary responsibility of
the task viewer is the delivery of an atomic data gathering
procedures. In order to provide flexibility in authoring data,
these procedures have been partitioned into three discrete
types of objects: tasks, sequences, and panels, each with
their own function, described in FIG. 5. The task viewer
application operates as a programmable wizard framework.
In order to take advantage of the extensible data model of the
described embodiment, an authoring system allows data
objects in the data model to be created, extended, and stored
by the system.

A services layer 210 can be considered part of interface
layer 106 and the front-end of the application-building
system. In the described embodiment, there are various
services 212 that allow a user to create a complete, multiuser
application without having to use any external programs or
services. As mentioned above, one such multiuser applica-
tion is creating a comprehensive e-commerce Web site for a
user who wants an online presence. In such an application,
services 212 refer to defined functions typically needed in
order to fully complete the application. In the customized
e-commerce Web site application of the described embodi-
ment, the following broadly defined services are typically
needed: 1) site building; 2) communication; 3) catalog or
portfolio; 4) commerce; 5) marketing; and 6) reporting. In
another preferred embodiment, a Web site-building applica-
tion can have more or fewer services as the needs of Web
sites can vary over time. In yet another preferred embodi-
ment, services of a different nature or type can be used for
a different application, such as a customer marketing cam-
paign.

FIG. 3 is an illustration of a data model for an e-commerce
enabled Web site in accordance with one embodiment of the
present invention. At the center of a data model 300 is a shop
system 302. Shop system 302, as with other systems
described below, is a collection of model objects. Shop 302
contains a unique sequence identifier (“SID”) used for
identifying a user. The SID is used by other systems to key
into shop 302. When a user logs in, the user’s SID is
retrieved and used to pull in the rest of the data from the
other systems for that user. Each of the systems can get to
shop using the user’s SID. Shop 302 is the key to getting
data from the other systems.

A task management system 304 is a wizard framework for
handling all user interaction through tasks, sequences, and
panels. These specific components are described below. Task
management system 304 is responsible for presenting a
standard, seamless, user interface to a user for all data
creation and editing functions. It allows for tracking and
resuming tasks when a user stops working on a task before
the task is completed. It is also responsible for the identi-
fication, verification, and publication of all data it receives
from a user through panels.

A partner system 306 is used primarily by the application-
building service provider and not the user. It allows the
service provider to partner with third-parties through which
users choose to build their applications. Partner system 306
is an aggregator of objects that relate to aspects of the
application-building service that can be modified according
to a particular partner. It is an extensible mechanism for
providing business term-specific overrides to the integrated
platform at runtime. For example, it contains models objects
and data objects that control aspects of the user experience,
such as color, fonts, and partner logos, that can be custom-
ized for a particular partner of the service provider. Thus,
these implementation-specific variables can change depend-
ing on the partner and are modeled and loaded into the

20

25

30

35

40

45

50

55

60

65

8

environment by partner system 306. This is done without
assistance from or effecting the other components or systems
in the platform.

A consumer system 308 maintains a database of end-users
somehow associated with the user, such as a list of visitors
and customers to an SBO Web site. This list or database is
fully integrated and addressable from other systems in data
model 300 using the user’s SID. A site management system
310 encapsulates data relating to a user’s Web site. A user
can have multiple sites, such as one that is being created and
is previewed only by the user and another that is published
and viewable by the public. A commerce/catalog system 312
is a catalog database attached to a user through shop 302,
similar to the database in consumer system 308. A typical
catalog database contains descriptions and prices of products
and services available from the user. Additionally, this
system is responsible for recording all commerce transaction
associated with the shop. This includes an order manage-
ment and processing function which is tied to consumer
system 308. A user management system 314 performs gen-
eral user authentication and checks roles and permission
levels within the system. For example, a user, such as an
SBO, may have several employees who can access the
application-building service, some of whom can perform
only certain tasks, such as creating a map page, but not
others, such as establishing a merchant account. User man-
agement system 314 controls access of users in the system.

Also shown in data model 300 are new system or appli-
cation constructs 316A and 316B. These constructs show
that new systems and applications can be added to data
model 300 dynamically without effecting existing systems.
As long as new systems 316A and 316B can be accessed
using a user’s SID, the platform can be extended to include
them. This can be done by creating additional model objects
and data objects, described in FIG. 4, and without altering
the structure of the underlying data schema. In addition, new
systems 316 A and 3168 can use data from the other systems
described above.

FIG. 4 is a block diagram of a data object, a model object,
and a data schema in accordance with one embodiment of
the present invention. A data object 400 is used for efficient
persistent storage and is capable of reading from and writing
to data schema 102 but is not capable of performing any
logical operations on the data. In the described embodiment,
data object 400 has two components: fixed attributes 402
and extensible attributes 404. Fixed attributes 402 represent
items known to the user at the time the data object is created
and may include data items such as a URL or Web address,
a user name, address, and other basic data. Some data items
can be divided into subcomponents. For example, phone
number can be stored as several components: country code,
suffix, prefix, area code, and so on.

Extensible attributes 404 include data that are user-spe-
cific or are added to the user system at a later time or cannot
be defined in fixed attributes 402. Extensible attributes 404
can include user-specific preferences, such as performing a
task in beginner or advanced mode, or hiding or showing a
summary area for a task. Another example of extensible
attributes is “Frequently Asked Questions” or FAQs data for
an SBO which are typically very business specific and,
therefore, ideal for being stored as extensible attributes in a
data object. Arrow 406 represents that data of either attribute
can be shared, or can be converted from one type to another
when allowed by the system.

Using an example of an e-commerce enabled Web site, an
SBO or online merchant can be represented as a collection
of data objects 400. These data can be further reduced into

US 7,219,327 Bl

9

categories that represent, at a high level, components of the
business. To illustrate, business data can generally be cat-
egorized into four areas: business information (e.g., hours of
operation, location, name, tax information, etc.), a catalog of
good and/or services which the business offers, a collection
of customers and their related attributes (e.g., name, contact
information, profile information, billing, etc.) and financial
data such as income and operating costs. The information is
collected via applications in these categories and is utilized
to deploy a core set of user applications that rely on this data
for functionality. Information is entered, exchanged, and
reused among components in a multiuser application. The
e-commerce Web site is described as a collection of data.
The model for this data can be populated by many applica-
tions. Examples of multiuser applications include the cre-
ation of Web pages, management of a complex Web site,
construction of online catalogs or portfolios, as well as
online order processing functionality, and e-commerce
transactions.

In order to manage information related to these categories,
the data are data. These objects are referred to as model
objects. A model object 408 is a containment structure for
data objects through which all interaction between applica-
tions and the data schema occurs. It contains business
intelligence in the form of dependency logic 410 for one or
more related data objects 412. Dependency logic 410 under-
stands the relationship between data objects 412 and knows
what needs to be done when certain data are modified. In a
simple example, when a user changes a Web address, at the
data object level, a URL field in fixed attributes component
402 is written to with the new address. However, data object
400 does not know that an external DNS server needs to be
notified. Model object 408, and specifically, dependency
logic 410, understands that the DNS server needs to be
notified and that there needs to be a storage change in the
data schema, and causes these events to occur.

Data schema 102 is the physical storage of data model 202
which, in turn, is a collection of data objects. An API 414
between model object 408 and data schema 102 allows for
modification of the data. API 414 is determined by the type
of physical data storage mechanism used, such as a rela-
tional database or a multidimensional database.

Besides being a container of data objects, model object
408 provides a user with a standardized interface for
manipulating attributes in data objects 412. Users do not
need an external understanding of the data objects’ interde-
pendencies or how the data are configured and stored. In
sum, the model object can be seen as a type of logical
interface between the application-building system and the
user, and the data objects, as contained in model objects, as
a type of database interface. In the described embodiment,
model objects and data objects are implemented by encap-
sulating them using Java™ bean technology as is known in
the field of Internet and network-based application program-
ming.

In order for the integrated platform to process the dispar-
ity among different types of business or non-business data,
the platform requires a mechanism for extending the
attributes of a given model object. As mentioned above, in
the described embodiment, XML is used to implement data
and logic for the model objects and data objects. As is known
in the field of Internet application programming, XML
allows for arbitrary attributes to be structured in a hierar-
chical format. This hierarchical format enforces structure
and dependency while allowing for changes that do not
affect external clients or users of the contained data. Thus,
data object 400 exposes its data to model object 408 via an

5

20

25

30

35

40

45

50

55

60

65

10
XML layer (shown as XML layer 203 of FIG. 2) thereby
allowing for attributes to be added as desired, i.e., making
them extensible. Model objects can be extended as new
relationships form which require enforcement of data depen-
dencies.

The interaction between a model object and data object
can be illustrated by taking the example of a model object
that acts on a relationship between an SBO and an online
customer. The model object in this case enforces a depen-
dency binding a data object to a business entity. Extensible
attributes of such a data object may begin with data relating
to when the relationship was established, how the customer
was referred to the SBO online site, and whether a transac-
tion was completed. Using XML to define these attributes
facilitates extending the system i.e., the SBO’s Web site, to
be aware of the number of return visits by the customer
without requiring the SBO to have an understanding of or
having to modify the underlying storage structures or depen-
dencies. Over time, the XML definition for such a “customer
relationship” object may expand to cover all aspects of the
history of transactions between the business and the cus-
tomer. By virtue of XML, the original specification describ-
ing when the customer first visited the Web site remains
unchanged while whole new subcategories of information
have been added to the object. The overall model has added
no new rules to support the new data, nor has the underlying
data layer and storage system changed to support the poten-
tially vast data contained by the system.

FIG. 5 is a block diagram showing a relationship among
tasks, sequences, and panels. A task 500 is a goal-based
activity or operation that a user performs in the application-
building process. One example is creating a home page in
the case of building an e-commerce Web site. Another
example is creating an ad banner, generating a list of
potential consumers, and enabling the ad banner to be
presented to the potential consumers in a consumer market-
ing campaign application. Tasks are managed by a task
viewer in task viewer application layer 208 of FIG. 2 and
further described in FIG. 6. Task 500 is made up of one or
more sequences 502, where a sequence is geared towards
completing a more granular operation within the task, such
as selecting an overall layout of a home page. The number
of sequences in a task can vary over time, as can the number
of tasks in the application-building process. A sequence, in
turn, is made up of a series of panel objects 504. It is at the
panel level where the user typically creates or edits data.
Examples of this are shown in FIGS. 9 to 12.

Each panel object 506 represents an atomic step in task
500. Panels 504 do this by creating form elements that
enable windows for data to be entered, displayed, or edited.
A form element is an HTML construct that defines the fields
that will be sent to a server when a user clicks a SUBMIT
button. A panel object 506 is responsible for knowing where
to go in the data objects to get its default data. This default
data is used for describing the requirements for valid edits of
the data and for describing where in the system to store valid
results. Panel object 506 can describe valid inputs for each
of their form elements or windows. Validation methods are
used to determine if a panel object’s contents meet the
criteria for storage in one or more data objects. The task
viewer manages validation by refusing to advance past
panels that do not meet the panel object’s validation criteria.

The user experience of the application-building process of
the present invention is based on a task-by-task approach. In
this model, users complete tasks (self-guided, goal-based
operations) to build and manage various parts of their
application, such as an e-commerce Web site, including the

US 7,219,327 Bl

11

creation of Web pages, management of a potentially com-
plex Web site, construction of online catalogs, online order
processing functionality, and e-commerce merchant func-
tions. The architecture is designed to have discrete layers of
functionality, building up from discrete actions or panels to
combinations of panels to form sequences which, in turn,
form tasks. Discrete actions, such as filling out a form field
or clicking a button, are combined together to make a task
such as building a Web page. Discrete tasks combine
together to form an activity, such as creating and managing
an online catalog. An example of a task-based approach to
building an application is shown in FIGS. 9A, 9B, and 9C.

FIG. 6 is a screen illustration showing components of a
task viewer application in accordance with one embodiment
of the present invention. A task viewer application 600 is
implemented as a collection of JHTML (Java™ HTML)
files. Task viewer 600, as displayed in a user interface, has
numerous sections: a controls area 602 for the application;
a current task information area 604; navigation elements
606; a configurable HTML form region 608 which allows
submitting/viewing information; and a content region 610
acting as a placeholder for contents for a current panel
object.

FIG. 7 is a block diagram showing various services used
for creating and maintaining a commercial online presence
700 in accordance with one embodiment of the present
invention. A site building service 702 allows a user to build
and maintain Web pages in a step-by-step manner in which
discrete tasks are completed. This service gives the user
control over the site’s appearance and content, and allows
the user to make changes to the Web site at anytime. This is
enabled in large part by data model 202. A communication
service 704 facilitates communicating with online users
viewing the online merchant’s site through such services as
personalized email newsletters and online surveys. Commu-
nication service 704 can also facilitate building a customer
database storing customer buying patterns and personal
preferences, all of which can improve communication
between the online merchant and visitors to the site.

A catalog service 706 allows a user to display products or
services through an online catalog or portfolio. The user can
dynamically change the format, style, and information.
Given that an online e-commerce site is being created, a
merchant account and an online transaction system needs to
be in place. This can be done using a commerce service 708.
This service allows users to manage online orders and
establish an efficient checkout process, if needed. A market-
ing service 710 lets the user promote the online business
using various marketing tools. For example, marketing
service 710 facilitates submitting the site to search engines.
As with the communication service, the marketing service
takes advantage of email newsletters and surveys, as well as
banner advertising. A reporting service 712 allows the SBO
to create sales and customer profile reports. Such reports can
also include statistics about Web site activity and trends in
visitor traffic.

FIG. 8 is a block diagram showing various tools for use
in an application-development system in accordance with
one embodiment of the present invention. It describes in
greater detail toolkit layer 204 and toolkits 206 of FIG. 2
describing the task-based architecture of the present inven-
tion. In the described embodiment, a contextual template
system (CTS) tool or context manager 802 used to filter all
derived objects based on a current user state. CTS imple-
ments a registry of extensible context checks and uses them
to maintain a polled snapshot of the current operating
environment. This context signature is used to retrieve

20

25

30

35

40

45

50

55

60

65

12

certain records (e.g., Task, Help, and Renderer records) from
the database, and exclude or prioritize them based on their
self-described contextual requirements. The CTS or context
manager is a runtime object that is responsible for main-
taining the context signature for a current user, and is used
by other objects to retrieve a list of relevant objects.

In the described embodiment, there are three components
in CTS 802. Collectively, they are responsible for the
management of contextual information in the system. A
context check component 804 is used by context manager
802 to assess and maintain the context signature. Context
check module 804 is a module of code which produces a
Boolean result. Context checks are written to allow for
filtering of a particular rule. An example of this might be a
check that is written to determine if the current user is
“owned” by a specific partner of the service provider.
Certain Renderers (e.g. page layouts) might only be allowed
for this specific partner, in which case the task would specify
a “Requires” context check for that specific aggregator. In
this context a partner is a third-party that has co-branded the
service provider’s interface and offers it to their users. Such
partners may wish to add or subtract various functionality
within the application-building process. In another example,
a user can be in a basic or advanced mode within a task or
the user may be in a create sequence or an edit sequence. For
many tasks, users are walked through a create sequence to
set a Web page or create their customer database. After this,
the user can access data that they have created within edit
mode or sequence thereby avoiding having to walk through
all the steps again.

Another component is a context information record 806.
All contextual objects include a context information record.
In the described embodiment, context information records
have three sections: Requires, Excludelf, and Mandatorylf.
Each of these categories is expressed in record 806 as a list
of context check IDs and the desired value for the condition
to be true. In a natural language example, a task might
express itself as follows: I Require that the user has already
built a site, but I should be ExcludedIf the customer has
already added a map to their site.

Context Check module 804 is programmed using any
Java™ development environment. The resulting class file is
registered with a name and ID using a content registration
tool 808. This tool is able to list context check modules by
name when Tasks and Renderers are being registered.

Context Checks are stored in the database and registered
when CTS 802 is constructed. CTS 802 manages a runtime
instance of each context check. At pre-determined times the
CTS polls each of the checks to produce a current signature.
When asked for a list of contextual objects, the CTS uses the
current signature to filter and sort the results of the database
query, resulting in a qualified list of Tasks or Renderers.

An Extended Attribute Framework (EAF) 810 is a tool by
which data object attributes are defined, manipulated, and
extracted from data schema 102. This attribute framework is
extended by all classes in the system which support
attributes. Framework 810 provides interfaces and methods
which need to be implemented by the extending classes. The
attributes themselves, for each instance of a class extending
EAF 810, are persistent and present in the database.

In the described embodiment, EAF 810 consists of an
“attributecollection” class 812 which consists of attribute
manipulation methods. The manipulation of attributes
includes methods to add, remove, replace and get attributes.
EAF 810 implements an indexed hierarchical collection of
attributes. Each attribute has associated with it a name, type
and index within the collection.

US 7,219,327 Bl

13

Another tool is a task management system (“TMS”) 814
system which is used to deliver a task-based interface. Task
management system 814 encapsulates the design and storage
of task sequences 502, their related panel objects 504, their
in-memory representation, and their interaction with task
viewer application 600. Task manager 814 consists of four
components that collectively manage the design, delivery,
and storage of task information.

A task list component 816 is a persistent object with two
primary purposes. First, it maintains a list of tasks that
customers have specified an interest in starting at a deferred
time. Second, task list component 816 is used to determine
a context-sensitive suggestion of tasks that the current
customer might want to pursue.

Task viewer component 818 defines a user interface
shown generally in FIG. 6. It is a JHTML based application
that interacts with the run-time object representing a cur-
rently active task. Task viewer 818 includes a collection of
navigation controls (e.g., next, previous, and special), a title
area, a content region which contains the current panel in the
sequence (containing form/data entry fields), and a collec-
tion of task management widgets such as Save buttons. Task
viewer application 818 queries the current task to determine
the next panel to display, the appropriateness of specific
navigation elements, the title to display, and other informa-
tion relevant to the accomplishment of the task. As such, the
in-memory representation of a task object is a model which
is manipulated by task viewer 818 acting as controller.

A task 822 is a read-only persistent object that encapsu-
lates visible aspects of a task, contextual information for
determining the task’s relevance under dynamic conditions,
and the sequence logic required for its delivery. In the
database, tasks are delivered as an attribute list with high-
level accessors available for common functions. As
described above, a panel 820 is an atomic element of a
sequence that is used to perform a specific step in a task.
Panels are registered in the system to provide for reference
counting of the sequences that contain them, and the man-
agement of their assets.

Task viewer application 818 is launched in response to a
request to perform a task. A task 822 is either user-added or
dynamically added to task list 816. When a task is started a
TSPTask object is added to a current session object. The
TSPTask acts as the intermediary for identifying how task
viewer 818 should respond to user interaction events.

FIGS. 9A, 9B, and 9C are flow diagrams illustrating a
task-based approach to building a particular application,
namely, an e-commerce Web site, in accordance with one
embodiment of the present invention. The process of build-
ing such an application is shown in three sample phases.
Phase 1, illustrated in FIG. 9A, shows generic tasks for
developing an e-commerce Web site. Phase 2, illustrated in
FIG. 9B, shows sample tasks needed for building an online
catalog to be used in the Web site and Phase 3, illustrated in
FIG. 9C, shows sample tasks for activating e-commerce
functions. At step 902 a user, such as an SBO, takes on the
first task of registering a domain name. In the described
embodiment, a user can either register their existing Web
address (e.g., my-store.com) or register a domain name with
the application-building service provider, in which case the
address would resemble my-store.service-provider.com. In
the later case, the service provider verifies that the name for
“my-store” is available and verifies basic business informa-
tion such as address and other user contact information,
including the user’s email address. At this stage the user also
creates a password for his account. It should be noted that
the entire application-building process requires that the user

20

25

30

40

45

55

14

only register once with the service provider. The user does
not have to re-register or register multiple times with dif-
ferent application tools when beginning work on a different
aspect or feature of the application.

At step 904 the user performs the task of determining the
general design and look of the Web site by selecting, for
example, a color scheme, design layout, and character fonts
of the site. In the described embodiment, the display aspect
of the site is separated from the content. In this task, the
display aspect is being determined. By doing so, the user is
settling on a consistent look and appearance for the site. In
the described embodiment, this is done by offering the user
a number of options or templates for layout designs and
color schemes. Each template is a set of HTML objects and
graphic templates, and is coded to contain, for example,
predetermined fonts, foreground and background colors, and
other graphical features. By choosing a template the system
can dynamically populate the display.

Once the user has completed this task, at step 906 she
creates and edits a top-level page or home page. Typically,
a home page introduces a consumer to the user’s business
and may describe generally the goods or services being
offered. The home page is typically updated frequently by
the user to reflect, for example, changes in the user’s
business (i.e., new products or services) or contact informa-
tion. At step 908 the user completes the task of creating and
editing a map page. The various panels, or steps, for
completing this task are described in greater detail in FIG.
10. At step 910 the user creates and edits a customer contact
page which essentially displays more detailed information
about contacting the user, which can be useful if the user is
a large, nation-wide business with many locations and
departments. These last two tasks are only two illustrative
examples of pages that the user can create for the Web site.
In the described example, templates are provided to the user
to easily create and edit these pages. Some of these tem-
plates are shown in FIGS. 11A, 11B, and 11C for creating
and editing a map page. Numerous other templated pages
can be offered to a user: an “About Us” page, a “Business
Relationships” page, a “Job Listings” page, “Frequently
Asked Questions,” “Employee Bios,” and so on. Also in the
described embodiment, the user can create any number of
customized Web pages for displaying information that suits
the user’s particular needs.

Steps 902 to 910 illustrate five examples of tasks for
creating a basic commercially viable Web site which, in turn,
is one example of a multiuser application. In other embodi-
ments, numerous other types of tasks may be more appro-
priate for a particular application or for the site-building
application. As mentioned above, these tasks can be grouped
together as phase 1 of the application-building process. It
should also be noted that these tasks and the ones following
are presented to the user in a consistent manner. The more
tasks the user completes, the more comfortable and efficient
the user becomes with the process, which does not change
significantly as the user advances in the process. This
enhances the overall user experience in using the applica-
tion-building process of the present invention.

FIG. 9B illustrates an example of a second phase of the
process. Here the tasks are oriented towards a more specific
aspect of the Web site-building application. The example
described is building an online catalog for the user’s busi-
ness. Most SBOs, for example, will want to display to
consumers a catalog or list of goods and services offered
along with photos, descriptions, prices, and so on. At step
912 the user creates category pages. This task is useful for
categorizing and distinguishing the user’s various goods and

US 7,219,327 Bl

15

services. For example, if the user is an SBO in the retail wine
business, there could be a category page for Reds, Whites,
Dessert, and so on, and additional category pages within
each category.

The next described task is creating and editing items to be
listed in the catalog, as shown in step 914. At step 916 the
user can upload photos or pictures of the items shown in the
online catalog. At step 918 the user creates and edits a front
page for the catalog that can, for example, generally describe
to consumers the various categories of goods or services
being offered. Another possible task involved in building an
online catalog is rearranging the order of items on the
category pages at step 920. This completes one example of
a phase 2 series of tasks for completing another aspect of a
Web-site application building process.

FIG. 9C describes yet another series of tasks for devel-
oping a commercially viable Web site. It describes tasks for
activating certain e-commerce functions normally needed by
businesses for accepting and processing actual orders online
in which consumers can make payments, for example, with
a credit card and have payments go directly to a merchant
account. At step 922 the user applies for an online merchant
account for accepting payments from consumers. The ser-
vice provider has an API to a third-party partner specializing
in merchant banking and related online shopping cart ser-
vices. As part of this task, the user completes an online form
as required by the third-party, and the service provider then
submits this to the third-party. In another preferred embodi-
ment, the user can open an online merchant account prior to
beginning the application-building process and enter the
existing information, such as bank name, account number, in
place of performing this task (entering such existing infor-
mation would itself be considered a task).

At step 924 the user prepares a series of shopping cart
checkout messages. These are messages displayed to a
consumer during the whole process of making a purchase
online. In a typical example, such messages can begin when
the consumer first places a first item in his shopping cart and
can end with the content of an email to the consumer when
the goods are shipped out. The user can choose from
standard messages, such as “Thank you for your order . . .
” to more customized messages. For example, the user can
select whether the confirmation email to the consumer
should contain a list of the items purchased or a simpler
message. At step 926 the user fills out a shipping rates table
to inform consumers of shipping costs and factors effecting
such costs such as weight, number of items, etc. Similarly,
at step 928 the user sets up a sales tax table.

At step 930 the user prepares a merchant policy stating
practices and policies the merchant abides by in processing
online transactions. In the described embodiment, the user,
if an SBO or other type of merchant, may be required to
abide by a set of standards for issues like refunds, shipping,
and so on, considered to be good e-business practices. At
step 932 it is determined whether the merchant account
applied for in step 922 has been approved. If it has not been
approved, the user can contact the service provider at step
934. If it has, the described example of activating e-com-
merce functions is complete and the SBO or online merchant
can begin processing online transactions. As with the pre-
vious phases, this is just one example of a series of tasks that
might be needed for building an e-commerce Web site.

FIG. 10 is a flow diagram of a process of creating and
editing a map page in the application building process in
accordance with one embodiment of the present invention.
It describes the task shown in step 908 of FIG. 9A. In the
site-building application, the user can create a customized,

20

25

30

35

40

45

50

55

60

65

16

interactive map page for the site. The user’s business address
is plotted on the map and consumers can zoom in, zoom out,
or recenter the map as desired. At step 1002 the user
completes a panel for creating an introduction panel for the
map page. In the described embodiment, the introduction
panel informs consumers of a physical location of the user’s
business, including directions and other information. At step
1004 it is determined whether the user has previously
entered his address. If not, the user does so at step 1006.
Once the user’s address is entered, the user chooses a layout
panel for the map page at step 1006. Here the user can select
from several different layouts. FIG. 11A is a screenshot
showing three map page layout options from which a user
can choose. As shown in panel 1102, the user selects one of
three layouts: layout 1104, layout 1106, or layout 1108, as
part of completing this particular task.

At step 1010 the user specifies a map panel which
determines how the map will be displayed the first time a
customer views it. Customers can then interact with the map
by zooming in or out or recentering the map. FIG. 11B is a
screenshot showing options available to a user for complet-
ing this task. In a panel 1110 is an initial map layout 1112.
The user can re-orient layout 1112 by selecting one of the
direction buttons, such as buttons 1114 for SW and S. The
user can select the level of desired detail by using a slider
1116 for zooming in or out.

At step 1012 the user completes a panel for specifying a
directions display area. Here a user can provide directions to
consumers. FIG. 11C is a screenshot showing how this panel
is completed. In a panel 1118 is map layout 1112 and
numerous text entry boxes that are self-explanatory. Box
1120 allows a user to enter a headline for the directions, box
1122 allows the user to enter specific directions for consum-
ers, and box 1124 lets the user add any additional informa-
tion that might be useful to a consumer, such as parking
information. At step 1014 the user can edit the map page by
bringing up a screen similar to FIG. 11C and editing the text
in boxes 1120, 1122, and 1124.

Although the foregoing invention has been described in
some detail for purposes of clarity of understanding, it will
be apparent that certain changes and modifications may be
practiced within the scope of the appended claims. Further-
more, it should be noted that there are alternative ways of
implementing both the process and apparatus of the present
invention. Accordingly, the present embodiments are to be
considered as illustrative and not restrictive, and the inven-
tion is not to be limited to the details given herein, but may
be modified within the scope and equivalents of the
appended claims.

What is claimed is:

1. A method of creating a Web site, the method compris-
ing:

invoking a Web site building application program from a

site on the Internet by a first user;

creating a Web site data model having a central hub

structure containing central hub application data;
creating a plurality of data objects wherein a data object
contains fixed Web site building data and extensible
Web site building data;
creating a first Web site building model object having a
first framework capable of managing tasks, processing
said data objects, and being an interface between other
model objects and the Web site building application;
creating one or more additional Web site building model
objects for containing Web site application data;
combining the first Web site building model object with
the one or more additional Web site building model

US 7,219,327 Bl

17

object wherein the first framework of the first Web site
building model is unaltered; and

enabling the combined first Web site building model

object and the one or more additional Web site building
model objects to share central hub application data.

2. A method as recited in claim 1 further comprising:

dynamically adding undefined attribute data to the control

hub application data.

3. A method as recited in claim 2 further comprising:

dynamically adding undefined attribute data to extensible

Web site building data of a data object.

4. A method as recited in claim 1 further comprising:

defining a plurality of Web site building model object

categories wherein a category corresponds to a group-
ing of one or more Web pages on the Web site.

5. A method as recited in claim 1 further comprising:

dynamically configuring the second Web site building

model object by adding Web site data.

6. A method as recited in claim 1 further comprising:

sharing Web site application data of the second Web site

building model object with a plurality of Web site
building applications.

7. A method as recited in claim 1 wherein the first Web site
building model object is capable of accepting and verifying
a plurality of process data objects.

8. A method as recited in claim 7 further comprising:

accepting and verifying the plurality of process data

objects at the first Web site building model object.

9. A method as recited in claim 1 wherein a second user
utilizing the Web site building application is able to use an
extension attribute or a new attribute defined by the first
user.

10. A method is recited in claim 1 further comprising:

accessing the central hub structure using a central hub

unique identifier.

w

10

20

25

30

18

11. A computer storage device containing computer-ex-
ecutable instructions for implementing a Web site-building
application having an extensible framework, the computer
storage device comprising:

a first storage area containing executable instructions for
creating a first model object relating to a Web site
building application, said first model object capable of
managing tasks and performing as a user interface
between the Web site building application and a first
user, of being a data manipulation logic component,
and of being an interface between other model objects
and the Web site building application;

a second storage area containing executable instructions
for creating a second model object for a Web site
building application that can be added to the first model
object data model without altering the extensible
framework of the Web site building application; and

a third storage area containing executable instructions for
creating a Web site building application data object
containing Web site fixed application data and Web site
extensible application data.

12. A storage medium as recited in claim 11 wherein the

first storage area is extensible.

13. A storage medium as recited in claim 11 wherein the
first model object and the second model object are combined
to share central hub application data.

14. A storage medium as recited in claim 11 wherein a
fourth storage area containing a plurality of data objects.

15. A storage medium as recited in claim 14 wherein the
fourth storage area contains undefined attribute data.

16. A storage medium as recited in claim 14 wherein a
data object has a fixed attribute and an extensible attribute.

#* #* #* #* #*

