US006108713A

United States Patent [(1] Patent Number: 6,108,713
Sambamurthy et al. 451 Date of Patent: Aug. 22, 2000
[54] MEDIA ACCESS CONTROL 5,640,605 6/1997 Johnson et al.cccocoeuviunnnnee 395/881
ARCHITECTURES AND NETWORK 5,717,855 2/1998 Norman et al. 709/250
5,790,786 8/1998 Wakeman et al. 395/200.02
MANAGEMENT SYSTEMS 5,822,618 10/1998 Ecclesinecoocvuvvvcvrunnnne 395/877
[75] Inventors: Namakkal S. Sambamurthy; OTHER PUBLICATIONS
Devendra K. Tripathi; Alak K. Deb;
Linh Tien Truong, all of San Jose; Unknown, “Local Area Networks Databook,” National
Praveen D. Kumar, Fremont, all of Semiconductor Corp., Santa Clara, CA, 1993 Edition, pp.
Calif. 1-3, 1-82, 1-149, 1-266, 1-410, 1-506, 1-600, 3-3, 374,
3-125.
[73] Assignee: Xagqti Corporation, San Jose, Calif. Unknown, “Reprint of Selected Presentations made to IEEE
802.3z,” Vancouver, BC, Nov. 1, 1996, pp. 1-170.
[21] Appl. No.: 08/845,562 Unknown, “84C300A 4-Port Fast Ethernet Controller,”
. SEEQ Technology, Inc., Nov. 6, 1995.
[22] Filed: Apr. 24, 1997 Unknown, “Intel Microcommunications,” Intel Corp., Mt.
L Prospect, IL, 1992, pp. 1-1, 1-38, 1-64, 1-97, 1-138,
[60] Provis'oRellatetli' Utts' I:Ipp;loc/g;o?s? aFtaL 11, 1997 17210, 1-361, 1-442.
10nal aj 1cation INO. €eb.
PP 7 ’ Patrick Van Eijjk, “Gigabit Ethernet: Technology, Systems,
[51] Int.CL7 GO6F 15/16 and Network Applications”, pp. 85-90, Apr. 1997, Electric
[52] US. Cl woooooooiecceeeeeere 709/250; 370/463 Design, vol. 45, No. 7.
[58] Field of Search ... 709/234, 250; . . .
370/462, 463, 475: 395/507 Primary Examiner—Zarni Maung
T Assistant Examiner—Patrice Winder
. Attorney, Agent, or Firm—Beyer Weaver & Thomas, LLP
[56] References Cited >, 18! y
[57] ABSTRACT
U.S. PATENT DOCUMENTS
4500467 5/1985 Lare 370/462 X Disclosed is a media access controller for transferring data
5058114 10/1991 Kuboki ot al. oo 371719 along a computer network. The media access controller
5175732 12/1992 Hendel et al. 3707463 includes a transmit media access controller that is configured
5925975 7/1993 Gates et al. v, 364/147 to process out-going packet data received from an upper
,225, / / goumng p ; an uppe
5,245,606 9/1993 DeSouza 370/85.13 layer for transmission to a physical layer. A receive media
5,245,617 9/1993 DeSouza et al. 371/37.1 access controller that is configured to process in-coming
5,245,704 9/1993 Weber et al. ..oovvvonnrrrriinnnnn. 395/200 packet data received from the physical layer for transmission
5,297,277 3/1994 Dein et al. oo 395/575 to the upper layer. A transmit multi-packet queue FIFO for
%g(ﬁ’?ﬂ ;‘ﬁggi graygord R 37307/8;‘31 receiving the out-going packet data from the upper layer
5351243 9/1994 Igzzlrlnkuilr?eu::t Zle al 370/475 before being passed to the transmit media access controller.
5365513 11/1994 Copley et al. 3017 A receive multi-packet queue FIFO for receiving the
53792890 1/1995 DeSouza et al. .. 370/85.13 in-coming packet data that is received by the receive media
5,404,544 4/1995 Crayfordccoccomrmmremmeinnns 395/750 access controller. The media access controller further
5,412,782 5/1995 Hausman et al.ccoovvrvuennee 395/250 including a media access controller manager interfacing
5,434,976 7/1995 Tan et al.cocovvvieiiviiniiinnnnns 709/234 with the transmit and receive media access controllers. The
5,436,902 7/1995 McNamara et al. . - 370/85.3 media access controller manager being responsible for man-
274‘5‘6,914 13%332 galilld?t ab [33%8(5)2 aging the flow of packet data through the transmit and
5’39}221 2/1996 A?la ni: Zt Zl. 75 /3/ 54 receive multi-packet queue FIFOs.
5504738 4/1996 Sambamurthy et al. 370/31
5,594,702 1/1997 Wakeman et al.cccouee. 395/507 X 26 Claims, 26 Drawing Sheets
100
& NETWORK DATA SYSTEM BUS 3 1o
]5(1
;_ ~14da 144b |
I [
! NETWORK DATA 108 1247 PARALLELEVENT ||
1 BUS INTERFACE CONTROLLER PR([?SESSOR |
: 10 /106 108 112 12577 PACKET BUFFER :
) pgrtons oy MR || MU Ly etone | e |
FIFO CONTROLLER Tx Rx FIFO CONTROLLER s ”?AN”RJS |
: l ‘I‘ 126 REGISTERS 0
I KRISC STREAM PROCESSOR COUNTERS |
: 1132%11% _ ush‘\ﬁ»ma 130 :
| 18~ Tx SUPER Bx 120 » |
| SUPER MAC MAC SUPER MAC 1y HRISC |
CONTROLLER IMANAGEMENT| CONTROLLER| STREAM
: PROCESSOR :

[17
MEDIUM

6,108,713

Sheet 1 of 26

Aug. 22, 2000

U.S. Patent

JTdNVHEd
)

{
0¢

(v 1011)
dl OIA4
< Ddl_y [2¥D|avd VIVA D11 /1| vs| va| a1danvadd
\ \) 3 \))
(¢ (((
W ov 8¢ 9¢ p¢ g 0€
71 —~L TVIISAHd
TOYLNOD SSTDOV VIAIN
W (OVIA)
AH_ NI VIVA
. TOYLNOD MNIT JID0T raas
e o o1
91 ~L AOMLIN
81 ~L LMOdSNV YL
0T ~L NOISSAS
(urv Jo11g)
VI DI w ~L NOLLVINASTdd
2\ bT NOILLYOI'TddV

6,108,713

Sheet 2 of 26

Aug. 22, 2000

U.S. Patent

(11vy I011{)
DI DIA INNIIN . IWNIAN
v8~ XHd AHd
IIIIIIIIIIIIIIIIII A L
| i !
AATIOYINOD MATIOYLNOD _
_ OVIN OVIA |
* 96 ™ Xy po~ X1 _
| { Y a |
| oL~ SYIINNOD _
| SOILSIIVIS TOUINOD Xd 0~ XL TOILNOD |
Xy XL,

| e~ SALVLS 89~ 04l Odld - v9 Odld = oua [~
ANVINNOD _
| A Y _
| > YATTIOULNOD ADVAAALNI SNE bl _
L S Y B

SNd WHLSAS

6,108,713

Sheet 3 of 26

Aug. 22, 2000

U.S. Patent

. INNIAIN WNIATIN
¢ ‘DId 71~ AHd AHd
Al
| p— | T
| AOSSAD0Ud ~ |
WVHYLS ¢ YATIOYLNOD INANADVNYIA YATIOYINOD

_ osrad w1l OVIN ¥4dNS k—) OVIN ——| OV ¥ddNS _
_ Y 071~ X ¥ddNSs X[, L _8I1 |
| o U |
| 08l esT1~J—1_qst1 acT I~ eer |
_ £) VOSSADOUd WVHILS DSIid _

SYAINNOD ey -
_ TVOLLSILVLS || 8CI = |
_

SYAISoOTd L %! !
_ SNLVLS X XL _
| aNv YATIOUINOD O4dld oML 0dld YA TIOWLNOD Odld

ANVININOD DNIDVNYN MO |,y 20310 20N0 L DNIOVNVIN MO || |
_ vEOx\KWHmZ IDIDVIIITAN LAMOVA-ILINW Mmomwkmz _
' | waaang 1asova S I 801~ 9017~ o117~ !
_ L _
| (ddd)

MOSSTO0YUd po1~| SATIOUINOD HOVANAINI SNE _
|| INGATTATIVIVA | y7q Vivd H4OMIEN _
T
| METTO9INGD FOVINAINT SNE |
_ TOYINOD ONIAVHILS [Ll Wri~ eppr _
L= — = —F — — — — — — — — — — — — — — U —
w SN9 TOUINOD / INTWAOYNYIN 0S1
101 SN WALSAS VIVA TIOMIAN
201 ~

6,108,713

Sheet 4 of 26

Aug. 22, 2000

U.S. Patent

¢ DI
91 ovl
TI0D DV ¥4dNS
R T l_
| _
| _
|
WATIOYINOD VATIOYINOD |
| INGWEDVNVI _
Qi1 T €——— DV JEdNS < OVIN 4ddNS —> apll
_ OV ¥4dNS _
_ Xd XL, _
| |
_ -~ b -~
_ 0zl LTI 811 _
—_— o e e —_ — e e O |
a8 ZIT 01T $01 eyl

6,108,713

Sheet 5 of 26

Aug. 22, 2000

U.S. Patent

b

Y4AOONA

90T\

[IND 24X
IIND / D4
LINSNVIL

B

80T

L0T

v OId

e

07 A

DD wx

0):10
LIANSNVYIL

e

0C A

24l DT1IX
AOVAYALNI

OTT LINSNVYL

=

HIVd VIVd
011

mwN

174¥4 917

¢ ¢

dd444d 41030vd

YHHLA
[AY4a™

2100714 TOYINOD LINSNVYL

01¢

AD01d
SALLITLLN
LINSNVYL

0T¢

81l

U.S. Patent Aug. 22, 2000 Sheet 6 of 26 6,108,713

%202

CTL
CONTROL LLC DATA READY
BUS DATA PATH FROM LLC
253 READY FOR
XCS XCS DATATO LLC
32
e 0
TRANSMIT DATA LOCAL 254
CONTROL TRANSFER < CONTROL
REGISTER BLOCK BLOCK LOGIC
210 204

FIG. 4A 210

302 COMMAND PROTOCOL 252
REGISTER

304~ DEFER PERIOD REGISTER

306~ SLOT TIME REGISTER

3087~ RETRY - LIMIT REGISTER

PROGRAMMABLE MIN/MAX
PACKET SIZE REGISTER

310~

FIG. 4B

6,108,713

Sheet 7 of 26

Aug. 22, 2000

U.S. Patent

19¢C

91

09¢ XN

ar D14 $ $

XINN

967+ _ HIVdVIVd NOILLVLOdWOD]~ 85T

NAD

v0< 0sz
pee (433 (1123 8C¢ 9T¢ 1443 (443 0ce
2 2 2 2 2 2 2 2
ul]
SUB1] 30104 | sidweg peyg | 1Xd 19LURD OU| djquieald ou | YD ou ped ome x1dpy jurx arqeus
. AALSIOTY TOO0LOUd ANVININOD
J¥ "DId AN

(41}

U.S. Patent Aug. 22, 2000 Sheet 8 of 26 6,108,713

260 206

./

COMMON CONTROL / DATA PATH A~

261
GIGABIT MEDIA FIBER CHANNEL
210|:> INDEPENDAENT
INTERFACE .
(GMII) (FC-1) — 262
263
omn FIG. 4E 208

ST T T T T T T T T T T
: :’\/212
|

STATE MACHINE l
: SUPPORT LOGIC [264 !
|
| % N :
! I
' |
! I
: :<: hst_2xmt_abort
| 266 |
: FRAME CARRIER !
, |CONTROL CONTROL !
| SM ~_-265 SM '
' (FCSM) (CCSM) |
I |
I |

6,108,713

Sheet 9 of 26

Aug. 22, 2000

U.S. Patent

012
DYy "DIA
10014 mwwﬂwwo YHLOINOD
JIDOT e NOLLVZITILN
1NOddNS - 1EVAVISYD

~

08¢

~T

[4:14

I8¢

dsy[1syzIwx
18IS 1SYZIUIX

~

8¢

0T¢

6,108,713

Sheet 10 of 26

Aug. 22, 2000

U.S. Patent

VS DId
ALITIAVININVIDOUd LHADVd-NI
%
b ALIIEVINYVYDO0¥d DA TOYINOD _
P >
5 ! 151 !
_ TTANYTd TTEVSIA TOYINOD | '
< ; > _
_] _— | Nﬁ
HIL i i | I _
A ¥ L 1 ’
I I | | _
] 1 1 |
x4 0% oun 0x o
eee | 7 |L1|Vsyale s> VYA | 11 | vsval|a1amnvaud (< v” ,v
OdI
ALDIOVE X 3 1TOvd ~ FIDDVd
4 "
U ATAVSIA TOULNOD 0,
(dNIL <€ >
] _ _
1 1
Ox sy
VIVA | ysivalatanyvad (<€ o> 280 | WYY | | vsvalatanvaud
OT1 T
d L3O Vd V 1LIDVd

N

¥0¢

N

a0s

U.S. Patent Aug. 22,2000 Sheet 11 of 26

COMPUTE

6,108,713

j/ 220

550 UTILIZATION
STATE

552 IS
START SAMPLE

LINE FLAG
TRUE?

554
INITIALIZATION

STATE

FIG. 5B

U.S. Patent

Aug. 22, 2000 Sheet 12 of 26

6,108,713

DATA PATH
START PROCESSING

(‘

601

\
(IS THERE A PACKET N

Y
/

BIT ON TRANSFER
CONTROL SIGNAL (XCS)
BUS

TO TRANSMIT
\

SET HOST (LLC) TO TRANSMIT

PROVIDE DATA ON DATA BUS, AND
ENABLE BYTES ON XCS BUS
FOR THE CURRENT PACKET

-

Y

606

HAS "READY FOR DATA"
FLAG BEEN TRANSMITTED
TO HOST (LLC)?

Y
Y

PROVEDE NEXT 32 BIT DATA AND ~_ 608
ENABLE BYTES
FROM LLC TO DATA TRANSPORT
BLOCK FOR THE CURRENT
PACKET

Y

610

IS THERE MORE
DATA PROVIDED IN THE
CURRENT PACKET?

Y
612
DE-ASSERT BOTH PACKET

VALID BIT AND HOST TO
TRANSMIT "DATA READY" FLAG

"DATA READY" FLAG, L~ 604

FIG. 6

U.S. Patent Aug. 22, 2000 Sheet 13 of 26 6,108,713

CONTROL PATH
PROCESSING

IS A MODIFICATION
REQUESTED FOR

THE CONTENTS OF A

PARTICULAR RECEIVE

CONTROL REGISTER
?

702

704~ IDENTIFY CONTROL REGISTER
TO BE MODIFIEDAND SET
CORRESPONDING FLAG
ON XCS BUS TO TRUE AND SET
CORRESPONDING CONTROL
INFORMATION ONCTL
CONTROL BUS

'

SET LATCH CONTROL

'

708 \— IDENTIFIED CONTROL
REGISTER IS LOADED

7067\

7107\ —

REMOVE LATCH CONTROL

FIG. 7

U.S. Patent Aug. 22, 2000 Sheet 14 of 26 6,108,713

CCSM
266

IS PACKET VALID,
DIFFER READY, AND
BACK OFF READY?

812

A

Y j810
IS N
DEFER READY }—DN —— IS THERE 308
? A COLLISION?
A
N
v Y
N/ IS PACKET HAS PACKET 820
| BURSTING 814 ENDED?
NEEDED?
A 818 Y 822
Y
Y Y

CARRIER
EXTENSION
STATE

IS CARRIER \N
EXTENSION
DONE?

IS PACKET BURSTING \N
OR CARRIER EXTENSION,
NEEDED?

816

FIG. 8A

U.S. Patent Aug. 22, 2000 Sheet 15 of 26 6,108,713

FCSM
265
- 850 y 3
> IDLE
STATE

IS ENABLE
FROM CCSM

TRUE?

Y
Y 855 852

IS PREAMBLE L. PREAMBLE
REQUIRED? STATE

/N
N v

853

DATA IS PREAMBLE
STATE v \ COMPLETE?

856

858
ISTHERE \ Y

A COLLISION
?

Y

860

HAS PACKET
ENDED

862

IS CRC
REQUIRED?

Y

Y

APPEND CRC

STATE

864

FIG. 8B

6,108,713

Sheet 16 of 26

Aug. 22, 2000

U.S. Patent

nq ol

{

A

6 DIA
d4a0odd
IIAD A 806
e
IIND DAY
[IND /04
906~} YIATIDAY
UMUI>8
91 L~) NOAHD 200714
<> T0¥INOD
L V DY) AAAIFOTY
\ N\
i< ¢
06 016
04l OTTd
JOVAIAINI |
206\ 7T YIAIIDAY ¢
116

<7

HLVd VivVd

AD07T1d
SALLITILA
HIAIADTd

m.

026

0zl

6,108,713

Sheet 17 of 26

Aug. 22, 2000

U.S. Patent

966 r66 766 066
ANIT
) AAIADTA ONIAAVd ATdVNA
d6 OId 474S TINVS | = iy AAIADTI
AVILS
756
906
snd
TOYINOD
SOX 91 ghle)
SOX
@ €56
D014

DID071 YAASNVIL VIVA JALSIDTY
TOIALNOD > TOILNOD
REINERER: WAAIZDTYA

0 0 ’ 0
¥$6 056 (43 756
906 ‘016 V6 ‘OId AT1dVNA 4LAd ¥$6 ‘026 ‘906 ‘016
HILvVd V1Vd

U.S. Patent Aug. 22, 2000 Sheet 18 of 26 6,108,713
904, 902
906
COMMON CONTROL / DATA PATH 961
FIBER CHANNEL GIGABIT MEDIA
INDEPENDANT FIG. 9C
INTERFACE
(FC-1) (GMII) - 963
962
16 8
920
908 GMII
984 982 980
; e)
CASCADABLE IPG SUPPORT
UTILIZATION AND LOGIC
COMPUTER OCTET BLOCK
COUNTER
FI1G. 9D

910

U.S. Patent Aug. 22, 2000 Sheet 19 of 26 6,108,713

1000 RECEIVE
/ DATA FLOW

IS PACKET
VALID

1012

¢

1002

Y
Y DE-ASSERT
HOST FROM INDICATING
1004 N\ SET HOST TO THAT IT IS READY
INDICATE THAT IT IS FOR DATA
READY FOR DATA \
IS
1006 DOES RECIEVER HAVE }N PACKET
DATA FOR HOST? VALID? /

¢ Y 1010

TRANSFER NEXT 32 BIT
DATATO LLC

1008

FIG. 10

U.S. Patent Aug. 22, 2000 Sheet 20 of 26 6,108,713

RECEIVE CONTROL PATH
1100
START /

A

1102

IS A MODIFICATION
REQUESTED FOR THE
CONTENTS OF A
PARTICULAR RECEIVE
CONTROL REGISTER
()

Y

A

Y

Y

~_ 1104

IDENTIFY RECEIVE CONTROL
REGISTER TO BE MODIFIED

AND SET CORRESPONDING FLAG

ON XCS BUS TO TRUE AND SET
CORRESPONDING CONTROL

INFORMATION ON CTL
CONTROL BUS

. 1106

SET LATCH CONTROL

-—~_- 1108

IDENTIFIED RECEIVE
CONTROL REGISTER IS LOADED

1110

REMOVE LATCH CONTROL

FIG. 11

U.S. Patent Aug. 22, 2000 Sheet 21 of 26 6,108,713

1202

RCSM
910

EXTENSION
STATE

1212

IS APPROPRIATE

PACKET LENGTH

VALIDATED
?

U.S. Patent Aug. 22, 2000 Sheet 22 of 26 6,108,713

1302
)e
|Packet Generator Configuration X
Ve Packet Count 131)8

1320 IPG{Preamble] Destination \| Source | Length,| Data‘
1322 ——» 10 (Enabled / 000000000000(000000000000(512 (Custom

1308 1310 ° 1312 ° 1314 1316

1324 ——»20 Disable 000000000000 000000000000 64 All I's 1306
d [>
1326 Add | [Edit | [Delete]

FIG. 13
[Packet Definition i~ 1402

1308 _+— Inter-Packet Gap (IPG)
1312 _}—Destination Address [] Mode:[Fixed [w}™~_1414a

1314 _4— Source Address [1 Mode:[Fixed [v}~_ 1414b
Data Pattern [Custom ||

Preamble Auto Padding [] Sequence Number
CRC [J Bit Error

Custom Data

0000 |01 02 03 04 05 06 07 08 09 OA 0B 0C OD OE OF 10
0010
0020
0030
0040
0050
0060 T~ 1420
0070
0080
0090

—
1422 FIG. 14

6,108,713

Sheet 23 of 26

Aug. 22, 2000

U.S. Patent

T Ty (e s | o el
m_:_::"::::: [Tdos | [emeoey || [T doys | [wwsuei]
- I
m______“__"_:__:: po[gesIq : S1ayoed JUElS
-1 | | |
Slerea bt ety b pajgesiq sjexoed Juny :
AR R AR ! paqesiq :slouJ Juewubiy 0 ” N0y Joxoed
- X | oS aPOJ Jisue)]
- Palgesia S1013 Q4O uoneJnbiyuoy
- pa|qesiq siseapeolg .
oy R psjqesiq siseanini | | 2 suoqy
03S/SIMd aley aAIe0ay “~91SL| pejqesiq snondsiwold| |0 sunuspun
0001 uoneinbiyuor) 74 sjesaya(
Le SMOIHOAO | |0 S|elayag SAISSIXT
EREE | KRR £91 SIS | |9y SUOISII0D) SAISSA0XT
5 e 961 sjuny| | 602 suoIs|fjoD e
N IEL “ _ _ _ _ _ ﬂ 1 ﬂ _ 0 s1013 yuawubiy | | 162 suolsijoD sjdnniy
NERERREEERRRREEE 0 siou3 040 | | 961 suois]|0) alburs
T 161 siseon| |0 sjsealn
M - _ e €8l SISBOlINI | | 102 siseanny
S || G/l siseapeoig| | zsz S)seopeo.g
H . 716'85G'LL sakgxL[elol| {80Z'0GS'LL seikg x] [eloL
09G/S1Md ajey ywsuel] “vbSH[9/5C2 sjayoed X1 [elo] | |6552¢C SieYoed X1 [EIOL | |
gLl }— 10853001 }0ed — L IOJRIBUSY J9XoEd -
(20§~ 90§k~ S0SL~ ' YOG~
0i5t sopng [ydeio |[ienisoey|[nwsuel)
ele(ﬁ
ETNEREN mk_ ,%
[disH MaIA uojeinbyuod el |
[XI@r aoejIa)U| SMiEIS T

VSIDIA

L— 80G1

N\ c0sl

U.S. Patent Aug. 22, 2000 Sheet 24 of 26 6,108,713

1550
| Graphs Configuration
Source 1556 Sample Record (sec) - — Scale Mix
Graph 1 [Transmit Rate [w] [0 = (1000 =
(Graph 2y Transmit Rate [w]| f' 0 = | 1000 =
> k 1558
1554 OK Cancel 1550
1550 Lok || |
FIG. 15B
1;02
| Receive Data Buffer |
&
Packet #1
Packet #2
: 1604
Packét #n |
v
1604 -|—~Packet
1606 -1 Length |_—_' [CRC Error
1608 -1 Destination Address |: [C1 Alignment Error
1610 -1 Source Address |:| [J Runt Packet
1612 |1 Data] [0 Giant Packet
1614 T CRC []
1616 —L—1" Sequence ‘___—]
o~
L1 RAW MEMORY DATA
1620 —— DUMP |
v

FIG. 16

U.S. Patent Aug. 22, 2000 Sheet 25 of 26 6,108,713

1/702
| Packet Processor Configuration X
1704 L General
(] Promiscuous [J CRC Error [J Runt Packet
[] Multicast [J AlignmentError [] Giant Packet
[J Broadcast
1706 L —~ Custom Filters
o Destination Address
1708 _/ First (] Second []
Mask [E—
TCI — —
|~ Source Address
1710 s/ First [] Second [
Mask [] []
Match C— 1 1]
L Data Pattern
1712 _/ First [J Second []
Offset []]
Mask] 1]
Match]]
[OK | | Cancel |

FIG. 17

6,108,713

Sheet 26 of 26

Aug. 22, 2000

U.S. Patent

oT——JOu
oooooaogooo

_ _— — 0Z81

0081 2081

pI81 ngoonooon
81 DIA
zI81 A
. |
_ v — _
> A||_|V 981 — Of
| _
S
0181 A||T|Vm <r\/§: «—p WNOU |
4 S
| n |
] | 1 q) _
8081 ~{ & A|!_||Ym MOSSADOUIOUIIN | cedl _
- A
o : |
/n\/ d 0
W
9081~ DU N . 5 |
q w W _
1 9181
|
_
_
|

6,108,713

1

MEDIA ACCESS CONTROL
ARCHITECTURES AND NETWORK
MANAGEMENT SYSTEMS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application having Ser. No. 60/037,588, filed on Feb.
11, 1997, entitled “Methods and Apparatuses for Performing
Media Access Control And Network Management.” This
application is hereby incorporated by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to integrated cir-
cuit devices used for processing data through communica-
tion networks, and more particularly, to methods and appa-
ratuses for processing and managing the flow of data in high
speed networks.

2. Description of the Related Art

The Ethernet local area network (LAN) is one of the most
popular and widely used computer networks in the world.
Since the Ethernet’s beginnings in the early 1970°s, com-
puter networking companies and engineering professionals
have continually worked to improve Ethernet product
versatility, reliability and transmission speeds. To ensure
that new Ethernet products were compatible and reliable, the
Institute of Electrical and Electronic Engineers (IEEE)
formed a working group to define and promote industry
LAN standards. Today, the IEEE has various Ethernet work-
ing groups that are responsible for standardizing the devel-
opment of new Ethernet protocols and products under an
internationally well known LAN standard called the “IEEE
802.3 standard.”

Currently, there are a wide variety of standard compliant
Ethernet products used for receiving, processing and trans-
mitting data over Ethernet networks. By way of example,
these networking products are typically integrated into net-
worked computers, network interface cards (NICs), routers,
switching hubs, bridges and repeaters. Until recently, com-
mon data transmission speeds over Ethernet networks were
10 mega bits per second (Mbps). However, to meet the
demand for faster data transmission speeds, the IEEE 802.3
standards committee officially introduced the “IEEE 802.3u
standard” in May of 1995. This standard is also referred to
as the “100 BASE T Fast Ethernet” standard because of its
ability to perform data transmissions up to about 100 Mbps.

FIG. 1A is a diagrammatic representation of an open
systems interconnection (OSI) layered model 10 developed
by the International Organization for Standards (ISO) for
describing the exchange of information between layers. The
OSI layered model 10 is particularly useful for separating
the technological functions of each layer, and thereby facili-
tating the modification or update of a given layer without
detrimentally impacting on the functions of neighboring
layers. At a lower most layer, the OSI model 10 has a

10

15

20

25

30

35

40

45

50

55

60

65

2

physical layer 12 that is responsible for encoding and
decoding data into signals that are transmitted across a
particular medium. As is well known in the art, physical
layer 12 is also known as the “PHY layer.”

Above the physical layer 12, a data link layer 14 is defined
for providing reliable transmission of data over a network
while performing appropriate interfacing with physical layer
12 and a network layer 16. As shown, data link layer 14
generally includes a logical link layer (LLC) 14a and a
media access control layer (MAC) 14b. LLC layer 14a is
generally a software function that is responsible for attach-
ing control information to the data being transmitted from
network layer 16 to MAC layer 14b. On the other hand,
MAC layer 14b is responsible for scheduling, transmitting
and receiving data over a link. Thus, MAC layer 14b is
primarily responsible for controlling the flow of data over a
network, ensuring that transmission errors are detected, and
ensuring that transmissions are appropriately synchronized.
As is well known in the art, MAC layer 14b generally
schedules and controls the access of data to physical layer 12
using a well known carrier sense multiple access with
collision detection (CSMA/CD) algorithm.

Network layer 16 is responsible for routing data between
nodes in a network, and for initiating, maintaining and
terminating a communication link between users connected
to the nodes. Transport layer 18 is responsible for perform-
ing data transfers within a particular level of service quality.
By way of example, a typical software protocol used for
performing transport layer 18 functions may be TCP/IP,
Novell IPX and NetBeui. Session layer 20 is generally
concerned with controlling when users are able to transmit
and receive data depending on whether the user’s is capable
of full-duplex or half-duplex transmission. Presentation
layer 22 is responsible for translating, converting, compress-
ing and decompressing data being transmitted across a
medium. As an example, presentation layer 22 functions are
typically performed by computer operating systems like
Unix, DOS, Microsoft Windows 95, Windows NT and
Macintosh OS. Finally, Application layer 24 provides users
with suitable interfaces for accessing and connecting to a
network.

FIG. 1B is a diagrammatic representation of typical
Ethernet packets used for transferring data across a network.
Apacket generally includes a preamble 30 which is typically
8 bytes long. The last byte (or octet) in the preamble is a start
frame delimiter (not shown). After the start frame delimiter
octet, a destination address (DA) 32 which is typically 6
bytes is used to identify the node that is to receive the
Ethernet packet. Following DA 32, is a source address (SA)
34 which is typically 6 bytes long, SA 34 is used to identify
the transmitting node directly on the transmitted packet.
After the SA 34, a length/type field (L/T) 36 (typically 2
bytes) is generally used to indicate the length and type of the
data field that follows. As is well known in the art, if a length
is provided, the packet is classified as an 802.3 packet, and
if the type field is provided, the packet is classified as an
Ethernet packet.

The following data field is identified as LLC data 38 since
the data field also includes information that may have been
encoded by the LLC layer 14a. A pad 40 is also shown
following LLC data 38. As is well known in the art, if a
given Ethernet packet is less than 64 bytes, most media
access controllers add a padding of 1’s and 0’s following
LLC data 38 in order to increase the Ethernet packet size to
at least 64 bytes. Once pad 40 is added, if necessary, a 4 byte
cyclic redundancy check (CRC) field is appended to the end
of a packet in order to check for corrupted packets at a

6,108,713

3

receiving end. As used herein, a “frame” should be under-
stood to be a sub-portion of data contained within a packet.

As described above, because MAC layer 14b is respon-
sible for controlling the flow of data over a network, MAC
layer 14b is generally responsible for encapsulating received
LLC data 38 with an appropriate preamble 30, DA 32, SA
34, DFL 36, Pad 40 and CRC 42. Further, an inter-packet
gap (IPG) is shown identifying a time span between trans-
mitted Ethernet packets. Conventionally, the IPG is a fixed
value that is defined by the 802.3 standard, and imposed by
asuitable MAC layer 14b. For more information on Ethernet
network communication technology, reference may be made
to issued U.S. Patents entitled Apparatus and Method for
Full-Duplex Ethernet Communications having U.S. Pat.
Nos. 5,311,114 and 5,504,738. These patents are hereby
incorporated by reference.

FIG. 1C is a system architecture representation of a
conventional Ethernet media access controller (MAC) 50.
As shown, MAC 50 includes a transmit (Tx) MAC control-
ler 54 for processing data received from an upper LLC layer,
and a receive (Rx) MAC controller 56 for processing
Ethernet packets received from a physical medium 84. From
the transmission side, data is typically received from the
upper LLC layer through a system bus 78. As shown, all data
that is passed to MAC 50 is sent to a bus interface controller
74 through a path 52. In addition, control and command
signals are also generally passed in a serial manner to MAC
50 through path 52. Once data is passed into bus interface
controller 74, the data is passed into a Tx FIFO 62 which
acts as a buffer for holding data received from the upper
LLC layer.

In general, both Tx FIFO 62 and a Rx FIFO 64 have
associated FIFO control blocks 66 and 68, for passing
control information to MAC controller 54, and for triggering
the transfer of data stored Tx FIFO 62 and Rx FIFO 68.
Therefore, in conventional MAC architectures, once a
selected processing control is passed to Tx MAC controller
54 or Rx MAC controller 56, that particular control infor-
mation will remain as the “set control” for a predetermined
number of Ethernet packets. Consequently, the processing
operations performed by Tx MAC controller 54 and Rx
MAC controller 56 cannot be modified during the transmis-
sion of each particular frame (i.e., they may only be modi-
fied between transmissions).

Further shown are command status registers 72 and
statistics counters 70 that are conventionally used to account
for and keep track of processing being performed in Tx
MAC controller 54 and Rx MAC controller 56. In this
conventional MAC design, path 52 is generally used for
passing both data and control signals. However, when infor-
mation stored in the command status registers 72 and
statistics counters 70 is accessed, any data or control signal
currently being passed to Tx MAC controller 54 will be
halted (which necessarily slows down the network).
Accordingly, management tasks that require access to the
command status registers 72 and statistics counters 70 will
also complete for use of path 52.

Although the conventional MAC architecture 50 has
worked well, further improvements to handle increased data
throughputs, handle critical flow control issues, and handle
management and network diagnostics issues are always
desirable. These features are especially desirable as network
speeds continue to increase. As an example, in current
technology Ethernet networks, flow control tasks are gen-
erally not even attempted, and most data transfers are
performed as end-to-end dumps over a selected link. That is,

25

35

40

45

50

55

60

65

4

once the transmitter parameters are set to perform requested
processing (i.e., the packet construction parameters are set),
the transmitter will continue dumping packets through the
network until the user wants to update the transmitted packet
construction parameters. Thus, if an update is requested, the
changes to the processing must be passed from the LLC
layer down to the MAC layer through the same processing
path.

Unfortunately, when both control and data are passed
through one processing path, both data and control must
compete for bandwidth and only one is processed at one
time. Consequently, once a packet transmission or receiving
function is initiated, the processing parameters may not be
changed. A further disadvantage with prior art Ethernet
MAC layer processing is that once an erroneous packet is
transmitted, there is generally no way of preventing or
aborting its transmission. Therefore, the receive side will
necessarily be required to deal with processing more error
prone packets.

Furthermore, prior art Ethernet MAC receiving layers are
currently unable to efficiently communicate back to the
transmitting station in situations where the receiver side of
a MAC layer is unable to handle a large queue of packets.
As is well known in the art, prior attempts at solving this
problem has been to increase the buffer size within the MAC
layer. Although increasing buffer sizes may have slowed the
problem for current technology 10 Mbps and 100 Mbps
Ethernet systems, once transmissions are increased to the
gigabit and greater level, increasing buffer sizes will no
longer be a reasonable solution in view of the increased data
throughput requirements.

It is further pointed out that prior art Ethernet systems are
currently unable to provide network managers with an
appropriate level of network performance diagnostics abili-
ties. By way of example, when network diagnostics and
performance characteristics are performed, network manag-
ers typically implement expensive diagnostic and network
sniffing equipment that is oftentimes prohibitively expensive
when analyzing average size networks. As a result, network
managers typically choose to upgrade entire Ethernet sys-
tems before attempts are made to trouble shoot a networks
performance faults and flow control limitations.

In view of the foregoing, there is a need for methods and
apparatuses for media access control (MAC) layer process-
ing that will allow for in-line packet-by packet processing of
data information and control information to modify a pack-
et’s characteristics while it is being processed for transmis-
sion or reception. In addition, there is a need for methods
and apparatuses for a MAC layer processing that allows
users to manage the flow of packet data being transmitted
and received through a network and accurately perform
sophisticated diagnostic testing.

SUMMARY OF THE INVENTION

Broadly speaking, the present invention fills these needs
by providing methods and apparatuses for a high speed
media access controller used to process packet data and
control information in an in-line packet-by packet manner. It
should be appreciated that the present invention can be
implemented in numerous ways, including as a process, an
apparatus, a system, a device, a method, or a computer
readable medium. Several inventive embodiments of the
present invention are described below.

In one embodiment, a media access controller is dis-
closed. The media access controller includes a transmit
media access controller that is configured to process out-

6,108,713

5

going packet data received from an upper layer for trans-
mission to a physical layer. A receive media access control-
ler that is configured to process in-coming packet data
received from the physical layer for transmission to the
upper layer. A transmit multi-packet queue FIFO for receiv-
ing the out-going packet data from the upper layer before
being passed to the transmit media access controller. A
receive multi-packet queue FIFO for receiving the
in-coming packet data that is received by the receive media
access controller. The media access controller further
including a media access controller manager interfacing
with the transmit and receive media access controllers. The
media access controller manager being responsible for man-
aging the flow of packet data through the transmit and
receive multi-packet queue FIFOs.

In another embodiment, a network interface system for
communicating across a network is disclosed. The network
interface system includes a media access controller for
processing transmit data received an upper layer and trans-
mitting the processed transmit data to a lower layer, and
processing receive data received from the lower layer and
transmitting the processed receive data to the upper layer.
The media access controller being configured to monitor the
flow of data between the upper and lower layers. The
network interface further including a data bus for commu-
nicating data and data control information between the upper
layer and the media access controller. A management control
bus for communicating management control information
between the upper layer and the media access controller, the
management control bus being independent of the data bus.

In yet another embodiment, a method for making a media
access controller for processing data transmit requests, data
receive requests and monitoring data flow through the media
access controller is disclosed. The media access controller
being configured to communicate with an upper layer and a
lower layer. The method includes integrating a first bus for
transferring data into and out of the media access controller.
Integrating a second bus for communicating management
control requests to the media access controller while the
transferring of data is in progress. The second bus being
coupled to a parallel events processor containing a micro-
processor for filtering selected data that is being transferred
through the first bus.

Other aspects and advantages of the invention will
become apparent from the following detailed description,
taken in conjunction with the accompanying drawings,
illustrating by way of example the principles of the inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the
following detailed description in conjunction with the
accompanying drawings, wherein like reference numerals
designate like structural elements, and in which:

FIG. 1A is a diagrammatic representation of an open
systems interconnection (OSI) layered model developed by
the International Organization for Standards (ISO) for
describing the exchange of information between layers.

FIG. 1B is a diagrammatic representation of an exemplary
Ethernet packet that is conventionally used for transferring
data across a network.

FIG. 1C is a system architecture representation of a
conventional Ethernet media access controller (MAC).

FIG. 2 is an architectural diagram of a flow based media
access controller (MAC) in accordance with one embodi-
ment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 3 is a more detailed block diagram illustrating the
transmission, management and receiving functions per-
formed within a logic core in accordance with one embodi-
ment of the present invention.

FIG. 4 is a block diagram of the internal architecture of a
transmitter controller in accordance with one embodiment of
the present invention.

FIG. 4A is a more detailed block diagram of the functional
blocks contained within Transmit LLC Interface of FIG. 4 in
accordance with one embodiment of the present invention.

FIG. 4B is an exemplary illustration of control registers
that may be contained within a control register block in
accordance with one embodiment of the present invention.

FIG. 4C shows a plurality of suitable flags used for
enabling and disabling processing functions carried out
within a SUPERMAC Tx controller in accordance with one
embodiment of the present invention.

FIG. 4D is a more detailed representation of a transmit
CRC block in accordance with one embodiment of the
present invention.

FIG. 4E shows a common control/data path block for
receiving 16-bit wide data from a suitable multiplexer in
accordance with one embodiment of the present invention.

FIG. 4F is a block diagram of support logic and state
machines that are preferably contained within an ETHER
processing block in accordance with one embodiment of the
present invention.

FIG. 4G is a block diagram illustrating in greater detail
the functional blocks contained within a transmit utilities
block of FIG. 4 in accordance with one embodiment of the
present invention.

FIG. 5A is a diagrammatic representation of four packets
being transmitted through a flow based MAC in accordance
with one embodiment of the present invention.

FIG. 5B is a state machine diagram that may be imple-
mented within a transmit utilities block of FIG. 4 in accor-
dance with one embodiment of the present invention.

FIG. 6 is a flowchart diagram illustrating the method steps
associated with processing data through a data path in
accordance with one embodiment of the present invention.

FIG. 7 shows a flowchart diagram illustrating the method
steps associated with control path processing in accordance
with one embodiment of the present invention.

FIG. 8A is a carrier control state machine (CCSM) that
may be contained within an ETHER processing block in
accordance with one embodiment of the present invention.

FIG. 8B is a frame control state machine (FCSM) that
may be contained within an ETHER processing block in
accordance with one embodiment of the present invention.

FIG. 9 illustrates a functional block diagram that may be
contained within a receiver SUPERMAC Rx controller in
accordance with one embodiment of the present invention.

FIG. 9A is a more detailed block diagram of a receiver
LLC interface of FIG. 9 in accordance with one embodiment
of the present invention.

FIG. 9B illustrates exemplary flags contained within a
receiver control register in accordance with one embodiment
of the present invention.

FIG. 9C shows a more detailed block diagram of the
structure contained within a receiver FC/GMII of FIG. 9 in
accordance with one embodiment of the present invention.

FIG. 9D is a block diagram that illustrates in greater detail
the functional blocks contained within a receive utilities
block of FIG. 9 in accordance with one embodiment of the
present invention.

6,108,713

7

FIG. 10 is a flowchart diagram illustrating the data flow
at the receiving side of the flow based MAC in accordance
with one embodiment of the present invention.

FIG. 11 is a flowchart diagram illustrating the method
steps associated with passing control in parallel with data
processing in accordance with one embodiment of the
present invention.

FIG. 12 is a state machine diagram for carrying out the
processing of the receiver control block of FIG. 9 in accor-
dance with one embodiment of the present invention.

FIG. 13 is a packet generator configuration user interface
for building packet data before transmission in accordance
with one embodiment of the present invention.

FIG. 14 shows an exemplary packet definition user inter-
face for defining packet attributes in accordance with one
embodiment of the present invention.

FIG. 15A is a status user interface window used for
displaying transmit and receive status information in accor-
dance with one embodiment of the present invention.

FIG. 15B shows a graphics configuration window for
configuring graph attributes in accordance with one embodi-
ment of the present invention.

FIG. 16 is a receive data buffer window for displaying
received packet data in accordance with one embodiment of
the present invention.

FIG. 17 is a packet processor configuration window used
for performing management filtering functions on data
received by a receiver in accordance with one embodiment
of the present invention.

FIG. 18 is a block diagram of an exemplary computer
system for carrying out the processing according to the
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

An invention is described for a high speed Ethernet media
access control layer integrated circuit core and method for
processing packet data in an in-line packet-by-packet man-
ner that allows simultaneous processing of data information
and associated control signals. Also disclosed is a media
access controller that is especially suited for performing
packet-by-packet flow management and accurately perform-
ing sophisticated network diagnostic testing. In the follow-
ing description, numerous specific details are set forth in
order to provide a thorough understanding of the present
invention. It will be obvious, however, to one skilled in the
art, that the present invention may be practiced without some
or all of these specific details. In other instances, well known
process operations have not been described in detail in order
not to unnecessarily obscure the present invention.

FIG. 2 is an architectural diagram of a flow based media
access controller (MAC) 150 for high speed transmissions in
accordance with one embodiment of the present invention.
In a preferred embodiment, gigabit speed Ethernet transmis-
sions are contemplated. However, it should be appreciated
that the architecture is equally applicable to other transmis-
sion protocols and both higher and lower speed transmis-
sions. In one embodiment, flow based MAC 150 is a parallel
data and control processing architecture. As illustrated in
FIG. 2, the flow based MAC 150 interfaces with a network
data system bus 101 where both data and control informa-
tion are processed, and a management/control bus 102
where both control and management data are passed.
Advantageously, as data is passed through network data
system bus 101 and processed through the various process-

10

15

20

25

30

35

40

45

50

55

60

65

8

ing blocks of flow based MAC 150, control information may
also be simultaneously passed through network data system
bus 101. It is important to realize that this type of parallel
processing provides the ability to change the processing
parameters within flow based MAC 150 at any given time
(i.e., even while packet data is being processed).

By way of example, suppose data is being received from
an upper LLC layer, and is being processed through various
processing blocks where a preamble field and a CRC field
are appended to form a packet. Due to the parallel process-
ing nature of flow based MAC 150, control information may
be simultaneously passed through network data system bus
101 to modify portions of the packet that has not yet been
processed. Accordingly, the parallel processing nature of
flow based MAC 150 is capable of passing appropriate
control information to alter specific processing parameters
even while data is currently being processed.

Referring first to the transmission side, when data is
initially received from the upper LLC layer through network
data system bus 101, data is transferred to a network data bus
interface controller (BIC) 104. In this embodiment, network
data BIC 104 may be any suitable interface controller such
as a slave interface and a direct memory access (DMA)
on-board interface. As shown, a first data/control path 144a
and a second data/control path 144b may be used to inter-
connect network data bus interface 101 to network data BIC
104 when high performance switching tasks are required of
flow based MAC 150. By way of example, first data/control
path 144a may be used for performing transfers from the
upper LLC layer to flow based MAC 150, and second
data/control path 144b may be used for performing transfers
from flow based MAC 150 to the upper LLC layer. Of
course, it is also contemplated that a single bi-directional
data/control path may be used to perform the aforemen-
tioned control and data transfers.

Once data is transmitted from network data system bus
101 to network data BIC 104, data may then be appropri-
ately transferred to a multi-packet queue FIFO Tx 106.
Generally, FIFO Tx 106 acts as a buffer (e.g., RAM
memory) for holding data that is being transmitted from the
upper LLC layer through network data system bus 101. In
this embodiment, FIFO Tx 106 is preferably capable of
storing up to ten or more packets of data. This is a significant
improvement over conventional single packet FIFO struc-
tures that would typically be unable to accommodate greater
storage requirements associated with increased throughputs
produced by gigabit speed (e.g., +1,000 Mbps) systems in
accordance with one embodiment of the present invention.

Once a suitable number of packets are buffered in FIFO
Tx 106, a network flow managing FIFO Tx controller 110 is
implemented to manage the high speed flow of packets from
FIFO Tx 106 into a micro RISC stream processor 114a. At
a higher level, network flow managing FIFO Tx controller
110 may be responsible for prioritizing the different types of
data being transferred across a network, such as audio,
video, graphics, etc. In this manner, flow based MAC 150 is
capable of having multiple simultaneous streams of data
flowing through FIFO Tx 106 at one time. In one feature,
when packets are being read out from FIFO Tx 106, any one
particular packet may be skipped without reading the entire
packet. In another feature, a packet may be re-transmitted
from FIFO Tx 106 by holding a given packet for a pro-
grammable time. In still another feature, a packet being
written into FIFO Tx 106 may be flushed directly out of
FIFO Tx 106 before being transmitted to micro-RISC stream
processor 114a.

In a further embodiment, network flow managing FIFO
Tx controller 110 is suited to number each of the frames

6,108,713

9

received in FIFO Tx 106 from the upper LLC layer in a
“circular sequence numbering” scheme. The circular
sequence numbering scheme preferably assigns a number to
each frame starting with a “1” for the first frame and
sequentially numbers upward for all following frames up to
a predetermined number (e.g., 1, 2, 3,4, 5, 6,7, . .. 20). In
this example, the predetermined number is “20.” Once
frames up to 20 are received in FIFO Tx 106, the next
received frame will again be numbered as “1.” Accordingly,
the numbering scheme is circular.

Therefore, when flow based MAC 150 transmits to a
receiving station, network flow managing FIFO Tx control-
ler 110 will keep track of the numbers assigned to each
frame, and will therefore be able to ascertain the frame
number of a frame that may be involved in a collision. By
way of example, if frame number “5” is involved in a
collision, frames 5-20 would be re-transmitted directly from
those stored (i.e., buffered) in FIFO Tx 106. As a result,
while transmissions are in progress, frames stored in FIFO
Tx 106 are preferably “not flushed” until an acknowledge
(Ack) signal indicating a successful transmission is received
from a receiving station. If a collision occurs, a standard
back-off operation is preferably performed as defined in the
802.3 standard.

In yet another embodiment, control information may be
embedded within packets buffered in FIFO Tx 106. In this
manner, the processing parameters may be modifiable in a
pipe-lined packet-by-packet basis. By way of example, the
embedded control information may contain modifications to
the processing parameters as well as identifying information
to single out a particular packet for modification. It should
be appreciated that having a smart network flow managing
FIFO Tx controller 110 also facilities network management
and associated testing protocols. Although few circum-
stances should require the processing parameters to be
changed for each successive packet, it will be appreciated
that the ability to modify the processing parameters for any
given packet in a packet stream is a powerful feature.

Once network flow managing FIFO Tx controller 110
performs any requested processing based on received con-
trol information, micro-RISC stream processor 114a advan-
tageously performs various processing and data filtering
tasks. By way of example, micro-RISC stream processor
114a operates in an in-line manner for modifying data
stream characteristics. Preferably, micro-RISC stream pro-
cessor operates on 32 bit-word portions to efficiently process
information along flow based MAC 150 to achieve giga-bit
speed performance. Furthermore, instructions are preferably
triggered off of the byte stream. In this embodiment, micro-
RISC stream processor 114a is also suited to operate in
different addressing modes such as relative byte count mode.

Internally, micro-RISC stream processor 114a will pref-
erably have a set of general purpose registers, data structure
registers, and special functional units. By way of example,
the functional units may include an ALU, count aggregators,
and checksum accumulation units. Further, micro-RISC
stream processor 1144 is preferably capable of operating in
a conditional, branch, and loop mode which provides addi-
tional flexibility and improved performance. Finally, micro-
RISC stream processor 114a processing instructions may
include a number of inventive packet field manipulations.
Exemplary manipulations may include: CUT, CLEAR,
COPY, APPEND, INSERT, AND , OR, XOR, for special-
ized header generation, separating data and headers,
IP_ CHKSUM checking and length calculation.

Still referring to FIG. 2, once appropriate data and control
information is processed within micro-RISC stream proces-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

sor 114a, data is transferred via a data path 113a to a
SUPERMAC Tx controller 118 which is preferably a state
machine configured to process packets received from micro-
RISC stream processor 114a and output the processed
packets to a physical (PHY) medium 140. As will be
described in greater detail below, the transmitting SUPER-
MAC Tx controller 118 will be primarily responsible for
appending appropriate hooks for performing management
tasks and processing requested packet structure modifica-
tions. In this manner, a variety of packet modifications and
management operations may be advantageously carried out
by the flow based MAC 150.

By way of example, SUPERMAC Tx controller 118 is
preferably suited to process packet modifications such as
“disable” preamble appending, “disable” CRC appending,
modify (e.g., custom program) inter packet gap (IPG), and
program a minimum packet size (e.g., enlarge or decrease a
standard 64 byte packet minimum to any arbitrary number)
in an in-line packet-by-packet manner. In this embodiment,
packet modification control may be simultaneously passed
from micro-RISC stream processor 114a to SUPERMAC Tx
controller 118 via a control path 113b. As mentioned above,
having the ability to pass control information (e.g., path
113b) simultaneously as packet data information (e.g., path
1134) is being processed allows SUPERMAC Tx to perform
processing modifications in a packet-by-packet basis as
contrasted with prior art systems that pass both control and
packet information in a serial manner.

By way of example, prior art MAC controllers generally
passed initial control information that would apply to all
packets that serially followed the initial control information.
Accordingly, no change or modification to packet processing
was allowed within a MAC controller until new control
information was passed. Of course, when control informa-
tion was passed, packet information would have to be
queued, which disadvantageously slowed processing and
transmitting speeds. However, the inventive SUPERMAC
Tx controller 118 simultaneously processes packet data and
modifies processing based on any parallel received control
information. Other advantageous features associated with
SUPERMAC Tx controller 118 will be described in greater
detail below.

FIG. 2 also shows a SUPERMAC management block 117
that is responsible for interfacing between transmitting
SUPERMAC Tx controller 118 and a receiving SUPER-
MAC Rx controller 120. SUPERMAC management block
117 also interfaces with network flow managing FIFO Tx
controller 110, a network flow managing FIFO Rx controller
112, and network data BIC 104. Generally, SUPERMAC
management block 117 functions as an interface that
receives flow control information, auto negotiation
commands, physical management commands, and pause
frame information (i.e., pause frames are used by a receiving
unit to notify a transmitting unit to cease the transmission of
data until a receiving buffer is free).

Also performed within SUPERMAC management block
117 is link, start-up and configuration, simulated collisions,
forced transmissions, and link monitoring. Furthermore,
SUPERMAC management 117 is advantageously suited to
prevent transmission from SUPERMAC Tx controller 118
until FIFO Tx 106 is appropriately loaded, or a predeter-
mined period of time is lapsed. As can be appreciated, this
enables precisely controlling the rate at which packets are
transmitted to PHY medium 140. Alternatively, SUPER-
MAC management block 117 may also set transmission to
occur as soon as packets are received by FIFO Tx 106.

In this embodiment, SUPERMAC Tx controller 118 and
SUPERMAC Rx controller 120 are shown linked to a

6,108,713

11

second micro-RISC stream processor 114b that is preferably
contained within a parallel event processor (PEP) 124. In
this embodiment, appropriate processing events occurring
within SUPERMAC Tx controller 118 and SUPERMAC Rx
controller 120 may be transferred to micro-RISC stream
processor 114b. In this manner, the processing events occur-
ring within the SUPERMAC’s may be stored within appro-
priate statistical counters 128 of PEP 124.

On the receiving side, micro-RISC stream processor 114a
is also shown coupled to micro-RISC stream processor 114b
in order to monitor and keep track of events being processed
in and out of flow based MAC 150. Typically, data is
received from a physical (PHY) medium 141 that may
include a decoder for decoding the signals into appropriate
packets that are received by Rx SUPERMAC controller 120.
As will be described in greater detail below, SUPERMAC
Rx controller 120 is typically responsible for functions such
as, e.g., stripping the preamble (if a preamble was appended
at the transmitting side) from the incoming packet.

Also, SUPERMAC Rx controller 120 is preferably
capable of passing CRC fields to micro-RISC stream pro-
cessor 114a without performing a conventional stripping
function. If this happens, CRC stripping may be performed
by micro-RISC stream processor 1144 itself before passing
the received packet data to the upper LLC layer. Further,
SUPERMAC Rx controller 120 may also perform IPG
capture, time-stamped receives, and program a minimum
and maximum packet size to avoid continually padding short
packets or returning an error for large packets that may be
transmitted at gigabit speeds or greater. Of course, pad
stripping may also be performed within SUPERMAC Rx
controller 120 if desired. Once SUPERMAC Rx controller
120 receives an a packet from physical medium 141, the
packet is transferred to micro-RISC stream processor 114a
for processing and then to a multi-packet queue FIFO Rx
108.

As in the transmitting side, events performed in SUPER-
MAC Rx controller 120, and micro-RISC stream processor
1144 are both linked to micro-RISC stream processor 114b
which accounts for those events in statistical counters 128.
Preferably, network flow managing FIFO Rx controller 112
is further capable of assigning a number to each of the
packets received by FIFO Rx 108. Because FIFO Rx con-
troller 112 is knowledgeable of the numbers assigned to each
packet, a control signal may be transferred to FIFO Rx
controller 112 requesting that a particular numbered packet
stored in FIFO Rx 108 be transferred (i.e., to LLC layer or
PEP 124 for management purposes). Once data is transferred
out of multi-packet queue FIFO Rx 108 and into network
data BIC 104, in a switched environment, data is passed
through data path 144b onto network data system bus 101.
Of course, a single bi-directional data path may alternatively
be used in place of paths 144a and 144b.

As mentioned above, one advantageous feature of the
present invention is its parallel data and control processing
architecture. In FIG. 2, management/control bus 102 is
generally used for passing control signals and performing
network management tasks through a separate dedicated
streaming control bus interface controller (BIC) 122. In this
embodiment, streaming BIC 122 is preferably implemented
for passing control information and performing data man-
agement tasks. By way of example, in performing a network
management task, it may be necessary to pull (i.e., filter) a
particular packet of information from the path of packets
being processed through network data BIC 104. Once the
desired packet is identified, it may then be filtered by
micro-RISC stream processor 114b that lies within parallel
event processor (PEP) 124.

10

15

20

25

30

35

40

45

50

55

60

65

12

Micro-RISC stream processor 114b is also preferably
responsible for programming new events, filtering desired
packets and buffering the desired packets in suitable buffers.
Further, micro-RISC stream processor 114b is also capable
of initiating programmable thresholding, alarm generation,
and detection of flows for matrix statistics generation. In
addition, a basic set of hardwired counters may also be
provided to account for various processing operations per-
formed by micro-RISC stream processor 114b.

In this embodiment, network management operations are
generally used for determining selected network statistics
such as throughput, utilization, number of collisions, traffic
flow characteristics, etc. Advantageously, simple network
management protocols (SNMP), and remote monitoring
(RMON) may also be implemented through PEP 124 of FIG.
2. As is well known in the art, RMON monitoring allows a
network manager to analyze various traffic statistics and
network parameters for comprehensive network fault
diagnostics, planning and performance tuning.

Accordingly, PEP 124 includes an inventive packet buffer
125 for storing appropriate packets that are implemented by
the network management protocols such as SNMP and
RMON. By way of example, if a user wants to monitor
certain packets within the data stream being processed
through network data BIC 104, the micro-RISC stream
processor 114a and 114b will filter out the desired packets
that are subsequently stored in packet buffer 125. Also
included within PEP 124 is command and status registers
126, such that the command registers receive associated
control signals from management/control bus 102 through
streaming control BIC 122.

Also shown are statistical counters 128 that are respon-
sible for storing particular events that may be occurring
within SUPERMAC Tx controller 118, SUPERMAC man-
agement block 117, SUPERMAC Rx controller 120, micro-
RISC stream processor 114a, and micro-RISC stream pro-
cessor 114b. Accordingly, as packets are processed and
events occur, the event information is streamed into micro-
RISC stream processor 1145 and then stored in statistical
counters 128. Further, a plurality of programmable counters
130 are provided within PEP 124 for keeping track of new
events that may be undefined at present time, but may be
defined at a future date.

In summary, the advantages of the architecture described
with reference to FIG. 2 are numerous. Broadly speaking,
the described architecture is capable of processing data and
control information in a parallel streamlined manner. In
addition, the parallel processing feature allows users to
perform desired management tasks as packet data is being
processed through a streamlined data path. Further, the
parallel processing nature enables modifications to the
packet structure (e.g., in response to control information) on
an in-line packet-by-packet basis. While such a described
architecture is believed to work particularly well, it should
be appreciated that similar functionalities can be accom-
plished using other architectures as well.

FIG. 3 is a block diagram of a SUPERMAC CORE 116
that includes SUPERMAC Tx controller 118, SUPERMAC
management block 117, and Rx SUPERMAC controller
120. In one embodiment, SUPERMAC Tx controller 118
includes various state machines responsible for processing
data received from the upper LLC layer, and incorporating
appropriate hooks into the processed packets before being
transferred to physical medium 140. Likewise, SUPERMAC
Rx controller 120 communicates with the physical medium
141 on the receive side, and micro-RISC stream processor
114a and 114b and SUPERMAC management block 117.

6,108,713

13

In this embodiment, SUPERMAC management 117 inter-
faces with SUPERMAC Tx controller 118 and SUPERMAC
Rx controller 120 for synchronizing a variety of transmis-
sion and receiving protocols. By way of example, auto
negotiation protocols may be controlled from SUPERMAC
management 117 in order to synchronize transmitting and
receiving networks to the most efficient and fastest commu-
nication speed. By way of example, if a transmitter is
capable of transmitting at gigabit speed and the receiver is
only capable of receiving at 100 Mbps, then, the transmitter
will adjust its speed to meet the receiver’s lower speed. Auto
negotiation is also described in the IEEE 802.3(u) standard
which is hereby incorporated by reference.

SUPERMAC management block 117 is also responsible
for controlling when packets are transmitted out of SUPER-
MAC Tx controller 118 and into PHY 140. By way of
example, SUPERMAC management block 117 may com-
municate to network flow management FIFO Tx controller
110 which informs multi-packet queue FIFO Tx 106 when
to transfer data to micro-RISC stream processor 114a and to
SUPERMAC Tx controller 118 for transmission.
Advantageously, SUPERMAC management 117 is capable
of controlling when multi-packet queue FIFO Tx 106 is to
transmit or hold data.

Therefore, once SUPERMAC management 117 instructs
FIFO Tx controller 110 that data transmission is appropriate
(e.g., after a predetermined number of packets are stored in
FIFO Tx 106), SUPERMAC management block 117 may
signal that transmission is now allowed. On the other hand,
SUPERMAC management block 117 may also allow FIFO
Tx controller 110 to transmit packets out of multi-packet
queue FIFO Tx 106 as soon as packets are received. A more
detailed discussion of the functional blocks and processing
functions performed within SUPERMAC Tx controller 118
(ie., transmitter side), and SUPERMAC Rx controller 120
(i.e., receiver side) will now be addressed below.

1. Transmitter Side

FIG. 4 is a block diagram of the internal architecture of
SUPERMAC Tx controller 118 in accordance with one
embodiment of the present invention. As shown, a 32-bit
wide data path is shown being passed into a Transmit LLC
Interface 202 (XLLC__IFC). In Transmit LLC Interface 202,
various processing operations may be performed on data that
is being received from an upper LLC layer. By way of
example, functionalities controlled by registers contained
within Transmit LLC Interface 202 may include: (1) pro-
gramming a desired defer period; (2) programming a desired
slot time (i.e., unit of backoff); (3) programming a retry
limit; programming a minimum and maximum packet size,
etc.

Also contained within Transmit LLC Interface 202 is a
command protocol register 302 that contains plurality of
flags for modifying packet processing in accordance with
one embodiment of the present invention. By way of
example, command protocol register 302 may contain flags
for: (a) enabling/disabling a preamble generation and
appending; (b) enabling/disabling a CRC calculation and
appending; (c) enabling/disabling a carrier extension
requirement (i.e., that the packet be at least 512 bytes long);
(d) controlling a full duplex mode; (e) enabling/disabling an
autopadding function; (f) enabling a start sample line func-
tion; (g) performing a force transmit (i.e., forcing a collision
to analyze a network’s response); and (h) enabling the
transmission process.

Following the illustrated data path, a 16-bit wide data bus
transfers packet information to a Transmit CRC 204 (XMT__

20

25

30

40

45

50

55

60

65

14

CRC) in accordance with one embodiment of the present
invention. Once the data is passed to Transmit CRC 204, a
CRC calculation will either be performed, or by-passed
depending on the setting of the CRC flag contained within
the command protocol register. It should be understood that
while packet information is being passed and processed
down the data path, control information may be simulta-
neously passed to modify packet processing at anytime. By
way of example, if a packet is in the process of being
processed in Transmit CRC 202, and control information
(ie., Flag is set to TRUE=NO CRC) disabling CRC is
passed just before the CRC is appended, no CRC will be
appended in Transmit CRC 202.

Once data is processed through Transmit 204, the 16-bit
data is passed to a Transmit FC/GMII 206 (XFC__GMII)
block that is responsible for processing the received packet
information into an appropriate form for transmission over
a physical medium. By way of example, the described high
speed flow based MAC 150 is preferably capable of simul-
taneously transmitting in a gigabit media independent inter-
face (GMII) form and in a Fiber Channel form. Of course,
it should be understood that the gigabit Flow based MAC
150 is also fully downward compatible to 10 Mbps systems.

By way of example, transmission may also be performed
in a media independent interface (MII) form, and transmis-
sion may also be carried out in one form at a time. That is,
although simultaneous transmission is possible, GMII or
Fiber Channel transmission may be carried out one at a time.
If transmission is carried out through a Fiber Channel
transmission, it may be necessary to perform suitable Fiber
Channel encoding in an encoder 208 which receives a 16-bit
wide data line and outputs a Fiber Channel specific 10-bit
wide output. It should also be appreciated that the functions
performed by encoder 208 may alternatively be performed
within a media independent Transmit FC/GMII 206 without
the need for a separate encoder unit.

As data is passed through blocks 202, 204 and 206, a
bi-directional communication link 203 is maintained
between block 202 and a transmit control block 210 con-
taining three separate processing blocks referred to herein as
ETHER 112, BACKOFF 216, and DEFER 214. Further
shown are two separate communication links 205 and 207
that are respectively used for communicating from transmit
control block 210 to Transmit LLC Interface 204 and
Transmit FC/GMII 206. Generally, communication links
205 and 207 are used for controlling and modifying pro-
cessing operations within blocks 204 and 206 in the afore-
mentioned packet-by-packet basis.

ETHER 212 is generally responsible for maintaining the
integrity of frames being processed through flow based
MAC 150 by ensuring that the appropriate Ethernet stan-
dards for frames and packets are satisfied. At a higher level,
ETHER: (a) ensures that frames are transferred when the
medium is not busy; (b) determines whether collisions
occur; (b) performs jamming if collisions occur; (c) deter-
mines if carrier extension is required; and (d) re-transmits
frames after defer and backoff is satisfied. At the packet
level, ETHER 212 may also:(e) generate a preamble, if
required, (f) generate CRC, if required; and (g) check for
collisions. In one embodiment, the tasks performed by
ETHER 212 are generally processed by suitable states
machines as will be described in greater detail below. Of
course, the processing performed by ETHER 212 may be
modified at anytime by passing control information in
parallel with data processing.

In certain cases, having the capability to disable both the
preamble and CRC generation on-the-fly may allow a user

6,108,713

15

to perform various management diagnostics on the network.
By way of example, when both the preamble and CRC are
both disabled, the flow based MAC 150 is essentially
passing raw data without processing. With this arrangement,
important diagnostic tests and management operations may
be performed on the transmitted data (i.e., the data trans-
mitted without preamble and CRC). In another embodiment,
a user may load a bit pattern sequence for performing phase
locked loop (PLL) checks, and various laser optics checks.
In practice, the above described testing functionalities may
be performed by implementing suitable software user inter-
faces that implement the various hooks enabled by the
SUPERMAC CORE 116. In addition, the aforementioned
testing may be performed without having to employ expen-
sive conventional test equipment.

As described above, transmit control block 210 also
contains BACKOFF block 216 which is preferably a state
machine that is responsible for determining the length of
time the transmitter must wait before a retry transmission
takes place after a collision. Generally speaking, backoff
time is expressed in terms of “units of backoff,” and the total
time lapsed before re-transmission is attempted (i.e., after a
collision) is a certain number of units of backoff. To deter-
mine the certain number of “units of backoff” the transmitter
must wait before a transmission is re-attempted, a IEEE
standard algorithm may be used for calculating the units of
backoff. Although other suitable algorithms may be used for
calculating the number of units of backoff, preferably, a
truncated binary exponential BACKOFF (TBEB) algorithm
is implemented. Further, it is important to note that “units of
backoff” are also referred to as “slot time.”

Conventionally, slot time is a fixed period of time (i.e.,
512 bit-times) for both 10 and 100 Mbps transmission speed
networks. A particularly advantageous feature of the present
invention is that “slot time™ is programmable to any suitable
number of bit-times. By way of example, for gigabit Eth-
ernet transmissions “slot time” may be programmed to any
suitable number of bytes-times up to a preferred number of
bytes that may be 512 byte-times. In a further embodiment,
a conventional “retry limit” of 16 retries may also be
programmed to any suitable number of retries. By way of
example, after an unsuccessful attempt at transmission, the
transmitter will backoff and re-attempt the transmit up to 16
times before an error is received (i.e., indicating that
medium is very busy or disconnected). It should be appre-
ciated that allowing retry limit programmability further
facilitates network flow optimization.

Also shown is DEFER block 214 that is responsible for
maintaining inter packet gaps (IPGs) in accordance with one
embodiment of the present invention. By way of example,
when it is determined that a signal is currently on the
medium (i.e., the medium is busy) no transmission will be
attempted for a certain period of time. In one embodiment,
the period of time will be calculated based on an IEEE
standard algorithm entitled “the %3 Rule.” For more infor-
mation on the % Rule, reference may be made to the IEEE
802.3 standard “Carrier Deference Section 4.2.3.2.1, page
26” (ISO/IEC 8802-3:1996(E) ANSI/IEEE). In general,
under a the % Rule, IPG carrier detection (e.g., to determine
if collisions occur) is performed for the first 25 of an inter
packet gap (IPG) period, and no carrier detection is per-
formed for the last 5 of the IPG.

Typically, the %5 Rule is followed when a “receive” is
followed by a “transmit,” and the IPG is set to about 96 bit
times or greater. On the other hand, when a “transmit” is
followed by a “transmit,” the IPG may be set to 96 bit times.
In this embodiment, IPG is preferably programmable in that

15

20

25

30

35

40

45

50

55

60

65

16

IPG may be made longer or shorter than 96 bit times. This
is particularly advantageous since throughput may be
increased by decreasing IPG when, e.g., few collisions are
being detected.

Also shown communicating with transmit control block
210 through, a bi-directional link 211, is a transmit utilities
block 220. In this embodiment, transmit utilities block 220
maintains a number of status counters that enable status
reporting when appropriate control is passed to determine
the status of flow based MAC 150 at any suitable time. Also,
transmit utilities block 220 is capable of accounting for
transmit latency (through a suitable counter) that is defined
as the length of “wait time” that lapsed before a transmission
was allowed on the network. Transmit utilities is arranged to
keep track of an octet count, a retry status count, a utilization
factor for determining the percentage of network use, a bit
information, an enable flag, a single collision flag (e.g., to
determine if a packet has experienced a single collision), a
multiple collision flag, a late collision flag (e.g., indicating
that a collision occurred after a particular window of time
has expired), a carrier sense error (which only applies to half
duplex), and an underflow flag that indicates whether the
upper LLC layer failed to provide any requested data.

The following table illustrates various status data that is
gathered by transmit utilities block 220 of FIG. 4 in the
described embodiment. Of course, the transmit utilities
block may be arranged to obtain other data as well. In
general, utilization counters typically reload upon underflow
and overflow, and utilization is preferably measured in terms
of 64 bytes.

TABLE 1

xmt2hst__stat

xmtEnabled Transmitter is enabled

colSingle there was one retry attempt

colMultiple there were more than one retries

colLate Collision occurred after the collision window was over.

errorCRS Either carrier sense did not appear at all or it came and
went off during the transmission.

errorUnderflow “hst2xmt_ data__rdy” was not there when it was required.

retryCnt Retry count during this transmission

xmtLatency Byte counts in this packet (Latency counter also)

ctrOverflow Counter overflowed (applicable to both byte counter and
latency counter)

UtilFactor Utilization factor

A state machine diagram further illustrates some of the
functionality of the transmit utilities block 220 as described
below with reference to FIG. SA. FIG. 4A is a more detailed
block diagram of the functional blocks contained within
Transmit LLC Interface 202 of FIG. 4 in accordance with
one embodiment of the present invention. As shown, a 32-bit
wide LLC data path is input into a data transfer block 250
that also receives 4-bits of control information from a
transfer control signal (XCS) bus. In addition, a control
(CTL) bus 253 is used to pass control information from
multi-packet FIFO Tx 106 and micro-RISC stream proces-
sor 114a (of FIG. 2) into a transmit control register block
252. In this embodiment, control bus 253 is preferably
identified as “hst2xmt_ ctl.” In this manner, when appropri-
ate control signals are passed through control bus 253 into
control register block 252, appropriate registers within con-
trol register block 252 may be selected and set to enable
appropriately desired processing functions within SUPER-
MAC Tx controller 118 of FIG. 3.

Further shown is a 5-bit wide control signal XCS entering
control register block 252 that is used for selecting registers

6,108,713

17

and setting latching times for the selected registers. Also
contained within Transmit LLC Interface 202 is a local
control logic block 254 that preferably receives a 2-bit wide
XCS control signal that defines the boundary and mode of
packet transfer. The following is an exemplary table 2
illustrating the various transmit control signals that may be
implemented in accordance with one embodiment of the
present invention.

TABLE 2

hst2xmt_ xcs

testMode Put the transmitter in test mode

hstClk Carries the host clock

cmdValid Command is valid on hst2xmt_ ctl bus

retCntValid Retry counter is on hst2xmt__ctl bus

slotTimeValid Slot Time is on hst2xmt_ ctl bus

defPeriodValid Defer period is on hst2xmt_ctl bus

pktValid Packet is valid and transmission may start

idle Valid Host wants to control TXD when transmitter is idle
byteEnables Corresponding byte is valid on the hst2xmt__data bus
kIndex These are source of KGEN TX__EN, or TX__ER outputs

In one embodiment, before a data transfer is performed, a
handshake is preferably satisfied between flow based MAC
150 and the upper LLC layer. By way of example, one
suitable handshake may be a signal transmitted by the LL.C
layer indicating that data is ready (e.g., Flag hst2xmt__data__
rdy) and a signal transmitted by flow based MAC 150
indicating that it is ready for data (e.g., Flag xmt2hst
rdy4data).

Once the appropriate flags have been set, and the hand-
shake has been verified (i.e., packet valid), the data may then
be transferred through data bus (i.e., hst2xmt_data) between
the upper LLC layer and the flow based MAC 150. For
reference, FIG. 4A shows data leaving transfer block 250
and going to transmit CRC 204 as described in FIG. 4, and
control information containing the appropriate register
selection performed in local control logic 252 is transmitted
to transmit control block 210.

As described above, the control information set in trans-
mit control register block 252 is then used by ETHER 212
and is subsequently communicated back to the flow of data
processing via communication links 203, 205 and 207. By
way of example, if registers within transmit control register
block 252 are set to avoid appending a preamble to the data
being processed in SUPERMAC Tx controller 118, then
processing will be performed within ETHER 212 and then
transferred back via communication link 203 to Transmit
LLC Interface 202. Accordingly, local control logic 254 also
receives control from transmit control block 210 which is
preferably coming from ETHER 212.

In this manner, the appropriate settings in control register
block 252 are implemented independently and simulta-
neously with data being transferred and processed through
the data path. To further emphasize the advantages associ-
ated with processing control and data in parallel, it is useful
to realize that while data is being processed, control infor-
mation may be received to modify data processing without
having to wait for data to be completely processed.

In this embodiment, local control logic 254 is preferably
capable of communicating both “to and from” transmit
control block 210 to set the appropriate parameters for
BACKOFF block 216 and DEFER block 214. Other signals
that may be used are, for example, a “xmt2hst abort” which
may be transferred directly to ETHER 212 to discontinue
any current transmission. Table 3 below shows exemplary
control signals “xmt2hst_ rsp” that come directly from con-
trol bus 253.

10

15

20

25

30

35

40

45

50

55

60

65

TABLE 3
xmt2hst__rsp
xmtClk Transmitter clock
fdplx Full duplex mode
xmtOK Transmission completed (it may have error
too)
xmtCol Kmitter collided (can be used to reset FIFO
pointers)
latency Valid The information on the byte counter is

transmission latency

octsValid The status bus (xmt2hst_ stat(23:13) carry
octet count information
utilValid (00) Counter working
(01) It underflowed
10) It overflowed
loadData This signal may be used by those hosts which

operate at /2 frequency. It is an alternative to
xmt2hst_ rdy4data.

FIG. 4B illustrates the aforementioned control registers
that may be contained within control register block 252 in
accordance with one embodiment of the present invention.
As shown, a command protocol register 302, a defer period
register 304, a slot time register 306, a retry limit register
308, and a programmable min/max packet size register 310,
are contained within transmit control register block 252.
Thus, when selected control signals CTL and XCS are
transferred to transmit control register block 252, the
attributes of the selected registers may be changed. In this
manner, the processing performed by SUPERMAC Tx 118
may modified.

By way of example, if a user desires to program a
particular custom retry limit, retry limit register 308 may be
selected by passing a control signal and a desired latching
time. Once latched, a new retry limit will be programmed
into retry limit register 308. In this embodiment, retry limit
register 308 may be a 5-bit register that is programmable to
any desired “number” between about 0 and about 31. The
programmable nature of retry limit register 308 is especially
useful in performing network flow management. By way of
example, if the “fixed” 802.3 standard defined retry limit of
“16” results in too many packets being dropped, the retry
limit may simply be adjusted upward to reduce the number
of dropped packets.

Likewise, defer period register 304 may be a 3 bit register
(or any other suitable size register) that may preferably be
programmable to any number between about 32 bit-times
and about 1024 bit-times, and more preferably between
about 32 bit-times and about 512 bit-times, and most pref-
erably between about 32 bit-times and about 128 bit-times.
In one example, defer period register 304 may be pro-
grammed to about 96 bit-times. Because the defer period is
generally the inter packet gap (IPG), when a user programs
the defer period, a modification is made to the IPG of
packets being transmitted. As a result to the change in IPG,
the “rate” at which packets are being transferred may be
increased or decreased. With this configuration, the slot time
may also be programmed to any even number between about
2 bytes and about 510 bytes. In this embodiment, slot time
register 306 is preferably an 8-bit register (or any other
suitable size register). By way of example, when the 8-bit
register is all ones (i.e., 11111111), the total number of bits
is 255 bits. When the 255 bits are multiplied by the slot time
which may be 16, the total number of bits will be 4,080 bits
or 510 bytes.

Finally, programmable min/max packet size register 310
allows a user to program the desired size for a transmitted

6,108,713

19

packet. By way of example, conventional standard defined
packets have a fixed minimum size of 64 bytes, however, it
is contemplated that packets transferred in a high speed
network (e.g., gigabit speeds or greater) may require larger
minimum packet sizes. To accommodate this possibility,
programmable min/max packet register is advantageously
provided to enable a user to custom program minimum
packet sizes.

FIG. 4C shows the contents of command protocol register
302 that include a number of suitable flags for enabling and
disabling processing functions carried out within SUPER-
MAC Tx controller 118. The exemplary flags are as follows:
(1) an enable XMT 320 flag for initiating a data transfer
process; (2) a fdplx 322 flag for enabling full duplex
functions (in full duplex, carrier sensing is ignored; (3) an
autopad 324 flag for padding packets with extra bits to meet
a minimum required size; (4) a no CRC 326 flag for
disabling the calculation of CRC; (5) a no preamble 328 flag
for disabling the appending of preamble to the beginning of
a packet; (6) a no carrier extension 330 flag used to disable
a minimum 512 byte carrier packet size that may be required
under the gigabit Ethernet standard IEEE 802.3z; (7) a start
sample line 332 flag used to begin sampling the transmit line
and generate statistics for Block 220; and (8) a force transmit
334 flag used to force a transmit regardless of whether the
medium is busy. As can be appreciated, when the appropriate
registers are set within control register block 252, the desired
packet structure being processed in flow based MAC 150,
may be manipulated while data is being transferred.

FIG. 4D is a more detailed representation of Transmit
CRC 204 (of FIG. 4) in accordance with one embodiment of
the present invention. As shown, a 16-bit wide data path is
transferred from data transfer block 250 of FIG. 4A, and is
simultaneously passed through CRC computation unit 258
and data path 256. In CRC computation unit 258, a standard
cyclic redundancy check computation is performed in accor-
dance with IEEE 802.3 standards defined algorithms.
However, as described above, if CRC is not required by
setting the appropriate flag 326 to TRUE (as shown in FIG.
4C), then no CRC computation will be performed or
appended to the packet being transferred from data transfer
block 250.

At this point, after an appropriate CRC computation is
performed and appended, if necessary, and the data is passed
through data path 256, packet information passing through
data path and CRC computation unit 258 will be passed to
a suitable multiplexer 260. Once multiplexed, a single 16-bit
wide data path will lead to a common control/data path 261
of FIG. 4E.

FIG. 4E shows a common control/data path 261 receiving
the 16-bit wide data from multiplexer 260. Upon receiving
the data, the data is appropriately channeled to either one or
both of the identified physical medium interfacing units. By
way of example, one medium interfacing unit may be a
gigabit media independent interface (GMII) 263 and the
other may be a fiber channel interface (FC-1) 262. As
mentioned above, the gigabit flow based MAC 150 of FIG.
2 is fully downward compatible and may therefore transmit
through a media independent interface (MII).

In addition, it should be understood that operation of the
aforementioned mediums may be performed simultaneously
or one at a time. Also shown is common control/data path
261 receiving control information from transmit control
block 210 for specifying which mode of operation is desired.
Generally speaking, FC-1, GMII, and MII define the stan-
dard electrical and mechanical interfaces required between
the flow based MAC 150 and a selected physical medium.

10

15

20

25

30

35

40

45

50

55

60

65

20

In this embodiment, the signals output through fiber
channel 262 will preferably include a txd fc (16-bit wide),
kgen (2-bit wide) and a send idle (flag). In general, txd_ fc
(data) and kgen (control) are mixed to generate suitable
transmitting symbols by encoder 208. The signals output
through GMII are preferably tx_en (enable), tx_er (error)
and txd (data). This information is then appropriately trans-
mitted to the physical medium 140 as shown in FIG. 2.

Furthermore, common control/data path 261 may receive
an “idle valid flag” signal from local control logic 254. In
one embodiment, when “idle valid flag” is received, suitable
symbols may be injected during quite times (i.c., between
packets). This is especially useful when a user desires to
transmit unique information without increasing the load
requirements of a network. By way of example, these special
symbols may be transmitted when the network would con-
ventionally be quite (i.e., an IPG period).

Accordingly, the symbols may represent selected pro-
grammable idle symbols defined by the 802.3 standard, or
custom user defined symbols. In one embodiment, the
custom user defined symbols may find particular use when
a transmitting station needs to determine the response of a
receiving station. That is, when a transmitting station propa-
gates the custom user defined symbols to the receiving
station, the receiving station may or may not be able to
process the custom user defined symbols, thereby providing
the transmitting station with data on the receiving stations
capabilities.

FIG. 4F illustrates the support logic and state machines
contained within ETHER 212 in accordance with one
embodiment of the present invention. As shown, a state
machine support logic 264 is coupled to a frame control state
machine (FCSM) 265, and a carrier control state machine
(CCSM) 266. State machine support logic 264 is generally
used to support the associated state machines’ functionality
and to generate appropriate intermediate signals. In general,
the processing performed by the disclosed state machines
may be modified on a packet-by-packet basis through the
use of parallel data and control processing paths.

Thus, when the particular registers contained within trans-
mit control register block 252 are modified, the processing
parameters within ETHER block 212 will be substantially
simultaneously implemented on the data being processed. It
should be understood that in prior art systems, modifications
were only allowed in between entire packet transmissions
(never mid packet). Generally, FCSM 265 is responsible
processing data in accordance with the flags set in command
protocol register 320. By way of example, if no preamble is
requested, no preamble will be generated nor appended. The
processing particulars of FCSM 265 will be described in
greater detail below with reference to FIG. 8B. Like wise,
CCSM 266 is generally responsible for: (a) determining
whether a packet has been transmitted without collisions; (b)
determining whether jams are required; (c¢) determining
whether packet bursting and carrier extensions are required,
etc. The processing particulars of CCSM 266 will also be
described in greater detail below with reference to FIG. 8A
below.

Still referring to FIG. 4F, a signal entitled “hst2xmt__
abort” is shown directed at ETHER block 212. In one
embodiment, hst2xmt__abort will preferably indicate that an
immediate discontinuation of processing be initiated (even
while a particular frame is being processed). Accordingly,
the abort function allows the user to stop transmission at any
point of a packet transmission and “flush out” the buffers
holding any un-transmitted data. Advantageously, this

6,108,713

21

allows a user to quickly and accurately remove any errors
from the network and avoid transmitting unwanted data over
the network.

FIG. 4G is a block diagram illustrating in greater detail
the functional blocks contained within transmit utilities
block 220 (of FIG. 4) in accordance with one embodiment
of the present invention. As shown, a support logic block
280 is preferably used for supporting functions performed
within transmit control block 210 that is responsible for
setting slot time duration and a minimum carrier packet sizes
of about 512 bytes. In the middle block, the latency counter
is used for accounting for the time lapsed before a trans-
mission occurred, and the octet counter is used to identify
the number of bytes transmitted per packet. In one
embodiment, latency is used to define the period of time that
passed from when a transmission is requested (e.g., when a
packet valid signal has been received and an appropriate
handshake was verified), to when a transmission is
attempted. Thus, if a collision occurs, a new latency period
is preferably calculated. In addition, once this information is
calculated, the information is communicated through a bus
281 that transmits control signals “xmt2hst stat” and
xmt2hst_rsp.” As described above, an appropriate hand-
shake to initiate a data transfer is generally a data-ready
signal received from the upper LLC layer and a ready-for-
data signal transmitted by the MAC layer (to the LLC layer)
indicating that the MAC layer is ready to receive data from
the LLC layer. Finally, a cascadable utilization computer
284 is used to calculate overflow, and underflow parameters
using circuitry that may be increased in a cascadable manner
based on a desired “minimum CPU interrupts.” By way of
example, once the minimum number of CPU interrupts
desired is identified, the utilization computer circuitry may
be cascaded i.e., replicated and integrated for increased
processing power to meet desired processing requirements.
Accordingly, the amount of hardware circuitry may be
adjusted depending on a user’s performance needs.

FIG. 5A is a diagrammatical representation of four pack-
ets being transmitted through the flow based MAC 150 in
accordance with one embodiment of the present invention.
To illustrate the parallel in-packet programmability of the
present invention, packet A 502, packet B 504, packet C 506,
and packet D 508 are shown being transmitted through flow
based media access controller 150 of FIG. 2. Because there
is a separate data processing path and a separate control
processing path, the data processing being performed on a
particular packet that is being passed through the flow based
MAC 150, may be modified while the packet is being
transmitted.

To illustrate this point, say for example, packet A 502 has
already been transmitted with a preamble field, a destination
address field, a source address field, a length/type (L/T)
field, a LLC data field, and a CRC field. Assume now that
a user wants to disable the CRC field for the next transmitted
packet B 504. To disable CRC in the next transmitted packet,
the user does not have to wait for the next IPG as required
by prior art embodiments. In accordance with one embodi-
ment of the present invention, the user may send a control
signal disabling CRC for packet B 504 at anytime just after
CRC was calculated for packet A 502. As pictorially
illustrated, CRC may be disabled at anytime between about
time t; (i.e., just after CRC of last packet) and time t, (i.e.,
just before CRC of next packet). As described above, having
the ability to change processing protocols on-the-fly for each
packet enables custom packet-by-packet processing not
available with prior art systems. As such, CRC may be
disabled at anytime during the transmission of packet B 504

20

25

30

35

40

45

50

55

60

65

22

up until just before the end of LLC data or any suitable pad
which is not shown for ease of illustration.

In another example, assume that the user desires to disable
the preamble in an upcoming packet. In one embodiment, if
preamble disable is desired, then control for disable must be
passed before the processing of a suitable preamble. By way
of example, once packet C 506 begins transmission, the
preamble cannot be disabled, but the preamble may be
disabled for the next packet between about a time t,, (i.e., just
after the preamble was generated for packet C 506) and an
about time t5 (i.e., just before the generation of preamble for
packet D 508). As shown, once disabled between t, and ts,
the next packet D 508 did not contain a preamble. It is
further important to appreciate that packet D 508 also does
not contain a CRC field since it was disabled between t, and
t, as described above. Of course, if at anytime CRC or
preamble is again required, an appropriate control signal
may be passed to re-activate the associated generation and
appending in a parallel packet-by-packet basis.

In a further embodiment, assume that a user desires to
custom-program an existing IPG “time x,” shown between
packet A 502 and packet B 504 to a longer time span. To
modify the IPG, the user may simply pass an appropriate
control signal in order to modify the IPG between any
identified packets. In this example, the user may want to
increase IPG starting between packet C 506 and packet D
508. To complete the modification, the user must pass
appropriate control between about a time t4 (i.e., just after
packet B 504 and about a time t, (ie., just before the end of
LLC data or any suitable pad of packet C 506). Of course,
if packet C 506 contained a CRC field, t, would be just
before the end of the appropriate CRC field.

As shown, the programmability of IPG has now been
implemented, and the IPG time span is now “time Xy+x;.”
Once programmed, the new IPG will remain until once again
modified in accordance with this embodiment. It should also
be appreciated that having the ability to modify IPG enables
a network manager to modify the rate at which packets are
being transmitted across a medium. By way of example, if
IPG increases, fewer packets will be transmitted during a
particular period of time. On the other hand, if IPG
decreases, more packets will be transmitted during the same
period of time.

FIG. 5B is a state machine diagram that is implemented
within transmit utilities block 220 (of FIG. 4) in accordance
with one embodiment of the present invention. In this
embodiment, the state machine is continually calculating the
aforementioned utilization parameters in a state 550.
Accordingly, as processing is performed within transmit
control block, the status counters within transmit utilities
block 210 area always being updated. In this manner, the
counters contained within compute utilization state 550 may
be read at anytime on demand. If at anytime a start sample
line flag 332 (of FIG. 4C) is set to true in condition 552, the
state will go to an initialization state 554 where the registers
are cleared and the compute utilization state 550 again
resumes computing the processing status from scratch. If the
condition “start sample line” flag is not true, then the
compute utilization state will continue computing the utili-
zation in accordance with the registers set within control
register block 252 of FIG. 4A. As can be appreciated,
condition 552 is analogous to a triggering effect which is
used to clear the registers and begin recalculating utilization
parameters.

FIG. 6 is a flowchart diagram illustrating the process steps
associated with processing data through a data path in

6,108,713

23

accordance with one embodiment of the present invention.
The method begins at a step 601 where it is determined
whether there is a packet to transmit. If there is no packet to
transmit, the method will wait until there is a packet to
transmit. When there is packet to transmit, the method will
proceed to a step 602 where a set packet valid bit of transfer
control signal (XCS) bus is passed to data transfer block 250
indicating that there is data to transfer on the LLC data path
which is 32 bits wide. Once the packet valid bit is set on the
transfer control XCS bus in step 602, the method will
proceed to a step 604. In step 604, the host is set to transmit
a “data ready” flag and provide data on the data bus for a
current packet.

In this embodiment, the host may be viewed as the upper
LLC layer that communicates with the media access con-
troller (MAC) layer. Once the host is set to transmit the “data
ready” flag and the data is provided on the data (i.e., first 32
bits) bus for the current packet, the method proceeds to a
decision step 606 where it is determined whether a “ready-
for-data” flag has been transmitted from the flow based
MAC 150 (of FIG. 2) to the host (LLC). If this flag has not
been transmitted, this indicates that the flow based MAC 150
is not ready to receive data from the LLC layer. At this point,
the method will wait until the flow based MAC 150 is ready
to receive data by setting the appropriate “ready-for-data”
flag that is transmitted to the host (LLC).

Once data-for-ready flag has been set in step 606, the
method will proceed to a step 608 where the next 32 bits of
data of the current packet are provided from the LLC to the
data transport block 250 of FIG. 4. As described in FIG. 4A,
the data transfer block 250 receives the data from the LLC
through a 32-bit wide path. However, it should be under-
stood that any suitable data path width may be implemented
without departing from the spirit and scope of the present
invention.

The method now proceeds to a decision step 610 where it
is determined whether there is more data provided in the
current packet. By way of example, if there are more 32-bit
wide words to be transmitted for the current packet, the
method will revert back to decision step 606 where it is
determined whether a ready-for-data flag has been transmit-
ted to the host LLC for the next 32-bit data from the LLC.
If it is determined that ready-for-data flag has been trans-
mitted to the host in step 606, the method will again proceed
to step 608 and 610, and again back to step 606 until all of
the data has been transmitted for the current packet.

Once it is determined in step 610 that there is no more data
provided for the current packet, the method will proceed to
a step 612 where both the packet valid bit and the host to
transmit “data ready” flag are de-asserted indicating that
there is no more data to be transmitted for the current packet.
Of course, once the method returns back to step 601, it is
once again determined whether there are more packets to
transmit. Accordingly, if there are more packets to transmit,
then the method will again proceed from step 602 through
step 612 until all bytes of data are transmitted for the next
packet.

FIG. 7 shows a flowchart diagram illustrating the method
steps associated with control path processing in accordance
with one embodiment of the present invention. Control path
processing starts at a step 602 where it is determined
whether a modification request for the contents of a particu-
lar control register is requested. If it is determined that no
modification is required for a particular control register, the
control path processing will not commence (i.e., data pro-
cessing will proceed without any modifications) and the

10

15

20

25

30

35

40

45

50

55

60

65

24

process will again revert to decision step 702 where it is
again determined whether a modification is requested for the
contents of a particular control register.

By way of example, FIG. 4B illustrates a set of six control
registers that may be selected for modifying the processing
of a particular packet as it is transferred down the data path
as described in FIG. 6. Accordingly, if the user desires to
reset one of the various registers in control register block
252, a control signal is passed into control register block 252
through control bus 253 as shown in FIG. 4A. Once a
particular register is selected, the contents of the registers are
either modified by writing in a particular value to modify
DEFER period register 304, slot time register 306, retry
limit register 308, or programmable min/max packet size
register.

On the other hand, if command protocol register 302 is
selected, various flags within command protocol register
302 may be selected. As shown in FIG. 4C, there are a
variety of flags that may be triggered based on the type of
control information fed into control register block 252 as
shown in FIG. 4A. By way of example, the user may want
to process in full duplex mode by selecting fdplx 322 flag,
or for example, the user may want to disable CRC by
selecting no CRC 326 flag. Of course, any of the other
suitable registers flag or register may selected depending on
the type of processing protocols desired by the user.

It is important to note that control path processing
described in FIG. 7 is a separate process that may be run in
parallel with the data processing being performed in FIG. 6.
As a result, data being processed through data path process-
ing of FIG. 6 may be modified at any point during the data
processing path irrespective of when control is passed, since
control may be passed in parallel as shown in FIG. 7. Thus,
if it is determined in step 702 that a modification request for
the contents of a particular control register is desired, the
method will proceed to a step 704 where the particular
control register to be modified is identified and the corre-
sponding flag is set on the XCS bus to be true. Once the
corresponding flag is set to true, the corresponding control
information is also set on the control bus. As an example, if
no preamble flag is set in command protocol register 302 of
FIG. 4C, the packet being transmitted in parallel as
described in FIG. 6, will no longer have a corresponding
preamble appended to the beginning of the packet.

The method now proceeds to a step 706 where a latch
control is set by the LLC that drives the XCS bus. Once the
latch control is set in 706, the method proceeds to a step 708
where the identified control register is loaded for the par-
ticular packet being processed. Once the identified control
register is loaded in step 708, the method proceeds to a step
710 where the latch control is removed. Once the latch
control is removed in step 710, the method will proceed back
to step 702 where it is again determined whether a modifi-
cation for the contents of a particular control register is
desired. If it is, the method will again proceed through steps
704 to 710.

FIG. 8A is a carrier control state machine (CCSM) 266
that may be contained within ETHER block 212 in accor-
dance with one embodiment of the present invention. In this
embodiment, the state begins at an idle state 802 when no
transmission is being performed by SUPERMAC Tx con-
troller 118 of FIG. 3. When it is determined at a condition
804 that a packet valid signal, a defer ready signal and a
backoff ready signal is received, the state will move to a
frame state 806 where actual packet data transmissions are
processed. While in frame state 806, CCSM is constantly

6,108,713

25

determining in a condition 808 whether a collision occurs
during the transmission of packets.

By way of example, if a collision is detected at a condition
808 (e.g., which indicates that another station is attempting
to transmit while a packet is being transmitted),the state
machine will go to a jam state 812 where a jamming signal
is sent out over the network and any current transmission
ceases. The jamming signal also assures that all other
stations on the network also detect a collision and likewise
cease their transmission. Once the other stations receive the
jamming signal and cease transmitting, all transmitting
stations will wait for a predetermined back off period which
is an arbitrary number of “slot times” that are calculated
using the aforementioned truncated binary exponential
backoff algorithm.

While in the jam state 812, it is constantly being deter-
mined in condition 824 whether jamming is complete. If
jamming is not complete, the jam state will continue jam-
ming until the jam state 812 is complete. Once it is deter-
mined that jamming is complete in condition 824, the state
will return to an idle state 802.

Referring again to condition 808, if it is determined that
there are no collisions in condition 808, the state will
proceed to another condition 820 where it is determined
whether the packet has ended. If the packet has not ended,
the state will revert back to frame state 806. On the other
hand, if the packet has ended in condition 820, the state will
revert to another condition 822 where it is determined
whether packet bursting or carrier extension is needed. As
described above, if carrier extension is required, the trans-
mitted packet will preferably be at least 512 bytes long. In
general, a packet is part of a carrier event and during each
packet transfer, a carrier event period of 512 bytes must laps
before a new packet is transmitted. Therefore, if a packet
contains less than 512 bytes of data, the rest of the bytes up
to 512 will generally include carrier extension symbols.

If it is determined in condition 822 that packet bursting or
carrier extension is needed, the state will proceed to a carrier
extension state 818 where appropriate carrier extension
processing is performed as described above. While in the
carrier extension state, it is determined in condition 816
whether carrier extension is done. If carrier extension is not
done, carrier extension state 818 will be maintained. Once
carrier extension is done, it will be determined in condition
814 whether packet bursting is needed (i.e., more packets
follow). If packet bursting is needed in condition 814, the
state will proceed to a condition 810. In condition 810, it is
determined whether a defer ready condition is met for the
new packet. If defer is not ready, the state is maintained at
carrier extension state 818 where it remains until it is
determined in condition 816 that carrier extension is done.
On the other hand, if defer is ready in condition 810, the state
machine will determine whether a packet valid condition is
met in condition 811.

If condition 811 is met, the state will revert to state frame
806 as described above. On the other hand, if the packet
valid condition 811 is not met, the state machine will revert
to idle state 802. It should be understood that while in full
duplex mode, no carrier sensing nor collision detection will
preferably be performed in state §08. Once an enable flag is
set in a step 805, a frame control state machine (FCSM) of
FIG. 8B is initiated. Although the CCSM and FCSM state
machines are being described as separate state machines, it
should be understood that each of the two state machines
may operate as one large state machine. In addition, it is
important to note that many of the operations performed in
CCSM and FCSM are preferably performed in parallel.

10

15

20

25

30

35

40

45

50

55

60

65

26

FIG. 8B begins at a condition 850 where the frame control
state machine is in an idle state 850 in accordance with one
embodiment of the present invention. From condition 850,
the state machine moves to a condition 851 where a deter-
mination is made as to whether “enable” is true from the
CCSM state machine of FIG. 8A. Once it is determined in
condition 851 that enable is true, the state machine will
move to a condition 855 where it is determined whether a
preamble required. By way of example, as shown in FIG.
4C, no preamble 328 flag may be appropriately set for each
packet being processed within flow control MAC 150. If a
preamble is required, an appropriate preamble is generated
and appended to the packet being processed. As described
above, preamble generally includes synchronization infor-
mation as well as a start frame delimiter indicating the
beginning of a frame.

While at preamble state 852, it is determined in condition
856 whether preamble appending is complete in preamble
state 852. If it is not complete, then preamble state 854 will
continue. Once the appropriate preamble has been appended
in state 852, the state will move to a data state 853 where
data is being transmitted through the appropriate data path.
While in data state 852, it is continually determined in
condition 858 whether there are collisions. As described
above, a collision may occur if any other station attempts to
transmit while the current station is transmitting. If it is
determined that a collision occurred, then the state will
return to idle state 851 and remain at idle waiting for a new
“enable” from CCSM of FIG. 8A.

On the other hand, if it is determined in condition 858 that
there is no collision, then it is determined in a condition 860
whether the packet has ended transmitting. Of course, if the
packet requires padding, auto padding will also be per-
formed in data state 852 which therefore, is part of the
packet that is being transmitted. In this embodiment, the
packet being transmitted at data state 853 does not yet
include CRC. If it is determined in condition 860 that the
packet has not ended its transmission, then the state will
return back data state 853 where data will continue trans-
mitting until complete. When it is determined that the packet
has ended transmitting and condition 860, it is further
determined whether CRC is required in condition 862.

By way of example, as shown in FIG. 4C, if no CRC 326
flag was set to true, then no CRC would be appended to the
end of the appropriate packet being transmitted. If the CRC
flag is not set to true in condition 862, then the state will
return to idle which indicates that the entire packet has been
transmitted without CRC. On the other hand, if the CRC flag
is not set to true, then CRC will be appended to the packet
being transmitted and the state will proceed to an append
CRC state 864 where the current packet being transmitted is
provided with appropriate CRC information.

Accordingly, frame control state machine (FCSM) 265
has now appropriately transmitted data having either no
preamble, no CRC, and detected any collisions. Of course,
if the full duplex 322 flag of FIG. 4C was set to true, then
condition 858 would not be determined and no collision
detection would be attempted.

2. Receiver Side

The receiving side of the flow based MAC 150 of FIG. 2
will now be described in accordance with one embodiment
of the present invention. As shown, the receiving side of
FIG. 2 generally receives a signal from physical medium
141 that is input into SUPERMAC Rx controller 120.
Accordingly, the following discussion will illustrate the
operational blocks contained within SUPERMAC Rx con-
troller 120.

6,108,713

27

FIG. 9 illustrates a functional block diagram that may be
contained within a receiver SUPERMAC Rx controller 120
in accordance with one embodiment of the present inven-
tion. As shown, there is a main data path that enters into a
receiver from a fiber channel or a gigabit medium indepen-
dent interface (GMII) 906. Although any physical medium
may be connected to receiver FC/GMII 906, a fiber channel
decoder 908 generally receives a 10-bit signal that is
decoded in accordance with well known Fiber Cannel stan-
dards. Once decoded, a 16-bit wide data path is output to
receiver FC/GMII 906.

Also shown is a GMII 8-bits wide input that is fed into
receiver FC/GMII 906. As described above, a suitable GMII
interface is generally capable of reading standard electrical
and mechanical signals received from various types of
physical layer devices. Once receiver FC/GMII 906 receives
and converts the appropriate signals into a suitable 16-bit
wide data path, the data is transferred to a receiver CRC
check 904 where a CRC check is performed on the received
packet to determine whether an error occurred during trans-
mission. As described with reference to the transmission
side, when a packet is transmitted, CRC is generated and
appended as a 4-byte CRC field at the end of the packet.
Accordingly, at the receiving side, the receiver CRC check
904 performs the same CRC calculation to determine
whether an error occurred during transmission.

Generally, if the CRC check output at block 904 is
different than that appended at the transmitting side, an error
is typically assumed to have occurred during transmission.
At the same time CRC checks are performed, the data is
transferred to receiver LLC interface 902 where appropriate
processing is performed on the received packet. By way of
example, pad stripping, start sample line, self receive and
receive enable operations may be performed on the received
packets based on appropriate flag set in a receiver controller
register as will be described in greater detail with reference
to FIGS. 9A and 9B below.

Once the receiver LLC interface 902 has performed
appropriate processing on the received packet, a 32-bit data
is output to the LLC upper layer. Generally speaking,
receiver LLC interface 902 performs suitable processing on
the received packets based on the states of the receiver
control block 910. In this embodiment, receiver control
block 910 is preferably a state machine capable of control-
ling the appropriate processing operations performed within
SUPERMAC Rx controller 120. Also shown is a receiver
utilities block 920 that is preferably suited for maintaining
receiver statistics. In one embodiment, typical receiver sta-
tistics signals are illustrated in Table 4 below.

TABLE 4

rev2hst_ stat

rcvEnabled

Receiver is active (enabled)

rcvError Reception was with error

errorCRC There was CRC error

errorLong The packet was too long (>1518 bytes); of course,
standard packet sizes are programmable in accordance
with one embodiment of the present invention.

errorShort The packet was shorter than 64 bytes; however, this is
programmable.

errorFrame Framing error detected (RXER)

errorOverFlow Buffer overflowed

ertorCRE Carrier event was too long

errorProtocol New packet came in before first packet completed 512
bytes. (Giga bit only).

macControl The packet is a MAC control packet

pkt8023 The packet is a 802.3 packet

10

15

20

25

30

35

40

45

50

55

60

65

28

TABLE 4-continued

rev2hst_ stat

receivelPG Value of received IPG
octsCnt Value of octet counter
ctrOflow The counter (for IPG or byte counter) overflowed

Utilization factor Value of utilization factor

FIG. 9Ais a more detailed block diagram of receiver LLC
interface 902 of FIG. 9 in accordance with one embodiment
of the present invention. As shown, a data transfer block 950
receives a 16-bit wide data from receiver FC/GMII 906 of
FIG. 9. Based on the state of the registers contained within
receiver control register 952, and the appropriate latching
time controlled by a receiver local control logic 954, the
SUPERMAC Rx controller 120 will perform the desired
processing.

By way of example, once control bus 953 passes an
appropriate control (CTL) command and a latching control
is received from transfer control signal bus (XCS), a selected
processing control will be transferred from receiver control
register 952 to selected processing blocks. In this
embodiment, the appropriate control information is passed
to receiver control block 910, receiver FC/GMII 906,
receiver utilities block 920 (of FIG. 9), and receiver control
logic 954 (of FIG. 9A).

Next, the receiver control logic 954 will preferably com-
municate to receiver control block (e.g., state machine) 910
and receiver FC/GMII 906. In one embodiment, CRC may
either be stripped within receiver LLC interface 902, or may
be passed through to micro-RISC stream processor 114a of
FIG. 2 where stripping is performed. In addition, if padding
was appended to the data field during transmission, the
padding may also be passed through to the micro-RISC
stream processor 114a when a byte enable is not provided.
In this manner, padding information may be passed to the
micro-RISC stream processor 114a for special inventive
processing.

Advantageously, passing padding information to LLC
allows the inclusion of proprietary information within the
pad field. In a further embodiment, passing the padding field
provides additional bandwidth for including management
information which may be used to identify particular frames
of interest within a stream of frames. In yet a further
embodiment, if the padding is passed, the pad may also
include time stamp information that may be used to deter-
mine network latencies. As described above, these latencies
may be defined as the length of time it takes a packet of
information to be transmitted on a network and then returned
back to the transmitting station. Of course, padding may
only be required for packets having less than 64 bytes of
data. On the other hand, if the minimum packet size is
programmably increased above 64 bytes, more packets will
require padding.

FIG. 9B illustrates the flags contained within a receiver
control register 952 in accordance with one embodiment of
the present invention. The first flag is a receive enable 990
flag which indicates that SUPERMAC Rx controller 120 is
ready to receive data. In this embodiment, enable 990 flag
may be used by receiver control logic 954 and data transfer
block 950 for initiating the receive protocol. The next flag is
a strip padding 992 flag that is used to set pad stripping
operations. In general, any required pad stripping is per-
formed at the receiver control block 910 state machine
which will be described in greater detail below.

The next flag is a start sampling line 994 flag which is
used to trigger sampling on the receive side. By way of

6,108,713

29

example, when start sample line 994 is triggered, the utili-
zation counters are essentially refreshed and the receiver’s
utilization is once again accounted for from scratch. The last
flag is a self-receive 996 flag that is used to enable receiving
data that may be transmitted by the transmitter when diag-
nostic operations are performed. Of course, if operation is in
half duplex and the medium is MII active, the signal will
normally be returned automatically. Although only specific
flags have been identified, it should be understood that any
number of suitable flags or additional registers may be
included depending on a user’s requirements.

FIG. 9C shows a more detailed block diagram of the
structure contained within receiver FC/GMII 906 of FIG. 9
in accordance with one embodiment of the present inven-
tion. In this embodiment, a first input may be provided in a
16-bit wide data path into fiber channel (FC-1) 962 from
decoder 908, and second (GMII) 8-bit wide signal may be
input into a gigabit media independent interface processing
block 963. It should be understood that blocks 962 and 963
are independent processing blocks. As an example, other
interfaces such as a downward compatible 100/10 Mbps MII
interface unit may also be implemented.

Also shown is a common control data path which com-
bines the control and data information received from both
fiber channel 962 and GMII 963 into a multiplexed signal
that is 16-bits wide. Once the data and control information
is multiplexed in block 961, the flow proceeds to receiver
CRC check 904 and receiver LLC interface 902 as described
above. Of course, if only a single signal is received from the
physical layer, the receiver FC/GMII is also capable of
receiving one signal at a time without performing a multi-
plexing operation.

FIG. 9D is a block diagram that illustrates in greater detail
the functional blocks contained within receive utilities block
920 (of FIG. 9) in accordance with one embodiment of the
present invention. As shown, a support logic block 980 is
preferably used for supporting functions performed within
receive control block 210. In middle block 982, an inter
packet gap (IPG) and octet counter is used for keeping tack
of IPG for received packets, and identify the number of
bytes received per packet respectively. For an exemplary list
of parameters maintained within receive utilities block 920,
a table 5 identifying suitable statistics retrieved through
response bus “rcv2hst rsp” are shown below. In a further
embodiment, parts of response bus “rcv2hst__rsp” may also
be driven by other modules.

TABLE 5
rcv2hst_1sp
revClk Useful to register the status information
rcvDone Packet received and packet Status bits are valid
pktValid Receiver is actively receiving packet (excluding
preamble)
idle Valid The requested direct data from decoder output or
GMII is valid
byteEnable Corresponding bytes are valid on rcv2hst_data bus
fcKgen The KFLAGs as received from FC-1 port or RX__
DV, RX__ER as received on GMII port
padValid Now PAD data is going on data bus
ipgValid IPG information is valid on status bus
octsValid byte count is valid on status bus
util Valid (00) Counter working
(01) It underflowed
(10) It overflowed

Still referring to FIG. 9D, a cascadable utilization com-
puter 984 is used to calculate receiver utilization using
circuitry that may be increased in a cascadable manner based
on a desired “minimum number of CPU interrupts.” As

10

15

20

25

30

35

40

45

50

55

60

65

30

described above, once the minimum number of CPU inter-
rupts desired is identified, the utilization computer circuitry
may be cascaded (i.e., replicated and integrated for increased
processing power) to meet desired processing requirements.
Accordingly, the amount of hardware circuitry may be
adjusted depending on a user’s performance needs.

FIG. 10 is a flowchart diagram 1000 of the data flow at the
receiving side of the LLC in accordance with one embodi-
ment of the present invention. It should be appreciated that
data and control information is processed in a parallel
manner as described above. The data path flow method
begins at a step 1002 where it is determined whether a
packet valid signal is true. If a packet valid signal is not true,
then the method will wait until a packet valid signal has been
passed to appropriately indicate that the receiver is ready
with a packet. When packet valid signal is true, the method
will proceed to a step 1004 where the host is set to indicate
that it is ready for data.

In this embodiment, the host should be understood to be
the upper LLC layer that is receiving the data from the flow
based MAC 150 of FIG. 2. When the host indicates that it
is ready for data in step 1004, the method will proceed to a
decision step 1006 where it is determined whether the
receiver has data for the host. By way of example, at this
step, it is determined whether the flow based MAC 150 has
data that it desires to transfer to the LLC layer. If it is
determined that the receiver does not have data to transfer to
the LLC layer, then the method will proceed to a decision
step 1010 where it is determined whether there is a packet
valid.

If a packet valid signal is present, then the method will
return back to decision step 1006 where it is again deter-
mined whether the receiver has data for the host. When the
receiver does have data for the host, then the method will
proceed to a step 1008 where the data (e.g., next 32 bits)
contained within the receiver is transferred to the LLC layer.
On the other hand, if it is determined in decision step 1010
that the packet valid signal is not present, then the method
will return to a step 1012 where the host (LLC) is
de-asserted from indicating that it is ready for data.

At this point, the method will return back to decision step
1002 where it is again determined whether a packet valid
signal has been established. At this point, the method may
continue to flow transferring data from steps 1002 through
steps 1010 until all the requested data has been transferred.

FIG. 11 is a flowchart diagram 1100 illustrating the
method steps associated with passing control in parallel with
a data path in accordance with one embodiment of the
present invention. In this embodiment, the method steps
associated with the modification of process control param-
eters in the receiving portion of the MAC flow controller 150
of FIG. 2 are described. The method begins at a decision step
1102 where it is determined whether a modification request
for the counters of a particular receive contents register is
desired.

By way of example, the receive control registers may be
registers contained within receiver control register block 952
as described above. Therefore, appropriate flags may be
contained within a register that may be contained within
receiver control register block 952. That is, if the user
desires to enable strip padding flag 992, then appropriate
control signals may be transmitted to receive control register
952 by control bus 953 of FIG. 9A, and a transfer control
signal (XCS) will indicate a latching time for that selection.

Once a modification is requested in step 1102, the method
will proceed to a step 1104 where the appropriate receive
control register is identified and the corresponding flag is set

6,108,713

31

on the XCS bus to be true. In addition, once the flag is set
on the XCS bus, the corresponding control information is
placed on the CTL 953 control bus. The method then
proceeds to a step 1106 where latch control is set for the
appropriate flag. Once latch control is set for the appropriate
flag in step 1106, the method proceeds to a step 1108 where
the identified receive control register is loaded for appro-
priate processing through the receive LLC interface 902 of
FIG. 9. Once the appropriate control register is loaded in
step 1108, the method proceeds to a step 1110 where the
latch control is removed. It is important to note that receive
control path 1100 may be processed in parallel with data
being transferred through receive data flow path 1000 of
FIG. 10.

FIG. 12 is a state machine diagram for receiver control
block 910 of FIG. 9 in accordance with one embodiment of
the present invention. Initially, the state machine is in an idle
state and remains inactive until it is determined that a packet
is coming from the physical medium (e.g., physical medium
141 of FIG. 2). By way of example, in condition 1204, if it
is determined that a packet is coming, then the state machine
will go to a data state 1206 where the current packet is
processed through the receiver FC/GMII 906 and receiver
LLC interface 902 of FIG. 9.

While in data state 1206, it is also determined in condition
1208 whether a packet is continuing, and if a packet is
coming, the state machine will remain at data state 1206
where the received packet is processed through SUPER-
MAC Rx controller 120. However, if it is determined in
condition 1208 that no packet is coming, then the state
machine will go to a carrier extension state 1210 where an
appropriate carrier extension is processed. In this
embodiment, the current packet will remain at carrier exten-
sion state 1210 until it is determined in condition 1212 that
the appropriate packet length has been validated. A packet is
said to be validated if the total size including carrier exten-
sion is at least 512 bytes (e.g., when in carrier extension
mode) in length. Once it is determined that the packet length
has been validated, the state will return to the idle state 1202
indicating that the current packet was correctly processed
through the receiver.

On the other hand, if it is determined in condition 1212
that the appropriate packet length has not been validated,
and it is determined in condition 1214 that a packet is
coming, then the state machine will go to a flush state 1218
where the un-validated packet as well as the packet that was
coming are flushed (i.e., two packets are flushed). If no
packet is coming, then the state will return to idle state 1202.

When the state machine is at carrier extension state 1212,
it is again determined in condition 1214 whether a packet is
coming. For example, assume a first packet is in the process
of being validated in state 1210, and a second packet arrives
(ie., condition 1214 is true) before the first packet is
validated. When this occurs, the state machine will go to
flush state 1218 where both the first and the second packet
are also flushed. In other words, the first packet as well as the
second packet that arrived while the first packet was being
validated are both flushed in flush state 1218. In addition, if
a packet any other packets are coming as determined in a
condition 1216 while the state machine is in flush state 1218,
those packets area also flushed. Accordingly, a processing
unit 1220 generally prevents the reception of un-validated
packets as well as any packets that prevented previously
received packets from being validated up to a packet length
of about 512 bytes in carrier extension mode..

Once the undesired packets are flushed, the state machine
will advantageously return to idle without receiving error

10

15

20

25

30

35

40

45

50

55

60

65

32

tainted packets. As can be appreciated, this feature further
exemplifies the flexibility and precise error checking per-
formed by the SUPERMAC CORE 116 of FIG. 3 in accor-
dance with one embodiment of the present invention.

FIG. 13 is a packet generator configuration 1302 user
interface for building packet data before transmission in
accordance with one embodiment of the present invention.
In this embodiment, a packet count field 1320 is shown at a
top left-hand corner of packet generator configuration 1302
to identify the number of packets (i.e., in packets) contained
within a packet field 1306. As illustrated, packet field 1306
contains a number of exemplary packets, including a packet
1322 and a packet 1324. Of course, any number of packets
may be contained within packet field 1306, and additional
packets may be added by selecting ADD icon button 1326 in
accordance with one embodiment.

As shown, each packet contained within packet field 1306
has various associated attributes that may be set in accor-
dance with a user’s preference. By way of example, suitable
parameters may include, inter packet gap (IPG) 1308, pre-
amble 1310, destination address 1312, source address 1314,
length field 1316, and data field 1318. For exemplary packet
1322, inter packet gap 1308 is set at a number “10.” In this
embodiment, the number 10 identifies the number of “16
bit” increments that define the actual number of bits asso-
ciated with a particular inter packet gap. Accordingly, in this
example, the IPG for exemplary packet 1322 is (10x16
bits=160 bits) 160 bits. Thus, a user may program any
number in IPG field 1308, and that number may then be
multiplied by 16 to arrive at the actual number of bits for the
inter packet gap.

In this example, the preamble field 1310 is shown as
enabled for packet 1322, however, it should be understood
that the preamble may be disabled as described above by
disabled by simply modifying a preamble selection field. Of
course, the user interface screens are driving the appropriate
software and underlying integrated circuit hardware that
may be performing processing operations in accordance
with this embodiment. In a like manner, a destination
address 1312 and a source address 1314 are illustrated as
arbitrary addresses that may be modified based on the user’s
requirements. As can be appreciated, the above described
modularity allows users to custom design transmitted pack-
ets by simply selecting a packet and modifying its param-
eters on a packet-by-packet basis.

Also shown is length field 1316 that identifies the length
of exemplary packet 1322 as 512 bytes, although any
suitable length may be selected by appropriately inputting
the desired value. Finally, data field 1318 identifies the data
for packet 1322 as custom. As is well known in the art, the
data field may be in any suitable bit arrangement including
all zeros, all ones, alternating ones and zeros, consecutive
four ones followed by four zeros, consecutive five ones
followed by five zeros, random bit allocation, and a custom
user provided bit pattern. In this example, the data field 1318
contains user provided custom data.

Further shown is a second exemplary packet 1324 having
an IPG of 20. As described above, an IPG of 20 means that
20 is multiplied by 16 to arrive at 320 bits for the program-
mable inter packet gap 1308. In this example, the preamble
for exemplary packet 1324 is shown as disabled and suitable
destination and source address digits may be appropriately
input by the user. Further, the length of exemplary packet
1324 is shown as 64 bytes and the data field 1318 is shown
as being all ones (i.e., ALL 1’s) as described above.

FIG. 14 shows an exemplary packet definition user inter-
face 1402 in accordance with one embodiment of the present

6,108,713

33

invention. Through this user interface, a user is able to
precisely define the appropriate packet characteristics on a
packet-by-packet basis. Accordingly, once a user selects a
particular packet from packet field 1306 of FIG. 13, packet
definition user interface 1402 of FIG. 14 may be displayed
to the user to enable modifications. From this user interface,
the user may appropriately set inter packet gap selection
field 1308, destination address field 1312, source address
field 1314, length field 1316, and data pattern field 1318.

In addition, the user may also select the appropriate
modes 1414a and 14145 for the destination address 1312
and source address 1314, respectively. By way of example,
by changing modes 1414a and 1414b, the user may auto-
matically increment or decrement the appropriate input
destination addresses or source addresses. In an alternative
embodiment, the user may also select modes 1414a and
1414b to provide random destination or source addresses.
Therefore, it should be appreciated that the user has a high
degree of control and modularity for setting the appropriate
characteristics of each packet being transmitted through flow
based MAC 150 (of FIG. 2) in accordance with various user
interfaces of the present invention.

Further shown, is selection boxes 1424 which allow user
to select preamble, auto padding, CRC, bit error, and
sequence numbers. As described above, if the user selects
preamble, CRC, auto padding, bit error, and sequence
number, these functions will be appropriately applied to the
packet that is currently selected. In this embodiment, bit
error allows a user to introduce a random number of error
bits into a packet being transmitted in order to determine the
response of a receiving station. Also, sequence number
allows the user to add sequence numbers to each packet
being transmitted which enables users to identify and deter-
mine whether certain packets having an associated sequence
number were involved in a collision. Therefore, when pack-
ets containing sequence numbers are transmitted, it is pos-
sible to determine whether any of the transmitted packets
were involved in a collision or has any errors associated
therewith. This is a particularly advantageous feature when
packets are of a short nature and are being transmitted near
gigabit speed in accordance with one embodiment of the
present invention.

In accordance with this embodiment, providing sequence
number capabilities allows the user to transmit without
having to provide a carrier extension to increase packet
sizes. Finally, packet definition window 1402 shows a data
field 1420 that is used to display the raw data contained
within particular memory address locations 1422. Thus, as is
well known in the art, for each memory address location
1422, there will be associated data that is being transmitted
for the packet selected in FIG. 13.

FIG. 15A is a user interface of a status interface window
1502 used for displaying transmit and receive status infor-
mation in accordance with one embodiment of the present
invention. Generally, status interface 1502 includes a packet
generator status list 1508 that illustrates various character-
istics of an in-progress transmit operation. By way of
example, packet generator status list 1508 displays various
parameters including: (a) a total transmitted packets field,;
(b) a total transmitted bytes field; (c) a broadcast field; (d) a
multicast field; (e) a unicast field; (f) a single collisions field;
(g) a multiple collisions field; (h) a late collisions field; (i)
an excessive collisions field; (j) an excessive deferrals; (k) a
deferrals field; (I) an under-runs field; and (m) an aborts
field.

In this embodiment, the appropriate fields display infor-
mation in “real-time” during an actual transmission of

20

25

30

35

40

45

50

55

60

65

34

packet data. Accordingly, having this type of information
allows users such as network managers to monitor the
transmission characteristics of a particular network. In this
embodiment, when a transmit icon 1504 or a transmit button
1508 are selected, transmission is appropriately placed in
progress, and a “transmit rate” graph window 1514 may be
displayed to pictorially identify packet data transmission
characteristics.

Also shown is a packet processor status list 1510 that
accounts for the processing parameters of packet data being
received by a SUPERMAC Rx controller 120 of the flow
based MAC 150 (of FIG. 2) in accordance with one embodi-
ment of the present invention. By way of example, packet
processor status list 1510 includes information such as: (a)
total received packets, (b) total received bytes, (c)
broadcasts, (d) multicasts, (e) unicasts, (f) CRC errors, (g)
alignment errors, (h) runts (i.e., undersized packets), (i)
giants (oversize packets), and (j) overflows. In addition,
configuration information is also provided for both packet
generator status list 1508 and packet processor status list
1510.

For packet generator status list 1508, configuration infor-
mation is provided for both transmit mode and packet count.
For packet processor status list 1510, configuration infor-
mation is provided for promiscuous data, multicast data,
broadcast data, CRC errors data, alignment errors data, runt
packets data, and giant packets data. Accordingly, during a
receiving operation, a receiver icon button 1505 or a receive
button 1522 is preferably selected to initiate the receiving
functions of packet processor status list 1510 which are
numerically and graphically displayed in receive rate win-
dow 1516.

In this example, both transmit rate window 1514 and
receive rate window 1516 display information regarding the
rate of packets per second (i.e., pkts/sec) being either
transmitted or received by the appropriate receiving and
transmitting units. As shown, the transmit rate is 175 packets
per second and the receive rate is 1,000 packets per second.
However, it should be understood that the receiving and
transmitting rates are merely exemplary and any suitable
transmitting and receiving rate may be displayed within
transmit rate window 1514 and receive rate 1516 window in
accordance with the parameters of the associated network.

In addition, both transmit rate window 1514 and receive
rate window 1516 are provided with a scaling graphical user
interface bar for scaling the appropriate displayed informa-
tion within each graphics window. Also, by selecting a
graphics icon 1506, the user may appropriately scale the
information being displayed within the graphics window or
change the characteristics of the information being dis-
played. Of course, during the real-time transmission and
receiving status generation, the user may appropriately stop
transmissions by selecting a button 1520, or stop receiving
functions by selecting a button 1524.

FIG. 15B shows a graphics configuration window 1550
which is displayed to the user upon selecting graphs icon
1506 of FIG. 15A. By way of example, the user may select
graphs 1 or 2 to graph any of the information that is
numerically displayed within either packet generator status
list 1508 or packets processor status list 1510. Accordingly,
although only transmit and receive rates are being displayed
for ease of illustration and description, it should be under-
stood that any suitable information may be displayed within
the graphics windows of FIG. 15A. Also shown is a “sample
period” (in seconds) 1556 and 1558 for graphs 1 and 2
respectively, which may be used to select the appropriate
sampling rate associated with each window of FIG. 15A.

6,108,713

35

Finally, a scale maximum/minimum may be used by select
an appropriate scaling using icons 1550 of FIG. 15B.

FIG. 16 is a receive data buffer window 1602 which may
be displayed to the user upon selecting receive data buffer
icon 1507 in FIG. 15A. Within a display field 1604, a list of
packets that are received by the receiver are displayed for the
user’s information. In this example, packet number 1, packet
number 2, and up to packet number N are displayed within
display field 1604. Once a particular packet is selected from
display field 1604, a user may select a particular packet by
implementing a suitable selecting device. Once a packet is
selected, the selected packet’s characteristics are displayed
to the user in a packet characteristics field 1604.

Packets characteristic field 1604 identifies a variety of
characteristic features of the received packet. By way of
example, the received packets information regarding length
1606, destination address 1608, source address 1610, data
address 1612, CRC 1614, and sequence 1616, are displayed
for the user’s information. Also provided is check boxes
identifying whether the received packet has a CRC error, an
alignment error, or is one of a runt packet and giant packet.
Accordingly, once each packet is received, the user may
simply select the that particular packet in packet field 1604,
and all of its appropriate characteristics are displayed to the
user for easy information. Also shown is a raw memory data
dump field 1620 that is used to display the attributes of the
packet data received from the receiving side of the flow
based MAC 150 of FIG. 2. Of course, the received data will
also include the associated memory address for ease of
modification and reference.

FIG. 17 is a packet processor configuration window 1702
used for performing management filtering functions on data
received by a receiver in accordance with one embodiment
of the present invention. By way of example, a general
selection field 1704 is shown including: (a) promiscuous, (b)
multicast, (¢) broadcast, (d) CRC error, (¢) alignment error,
(£) runt packet, and (g) giant packet selection features. In this
example, promiscuous selection check box is used to filter
out and examine each and every part of a received packet
(ie., even if errors are present) when performing diagnostics
analysis. Multicast selection check box is used when a user
wants to configure the packet processor to receive and
examine packets that has multicast destination address.
Broadcast selection check box is used to configure the
packet processor to examine packets that are broadcast to the
network (i.e., destination address is a broadcast address).
CRC error selection check box is used to configure the
packet processor to examine (i.c., filter out and examine)
packets with CRC errors.

Alignment error selection check box is used to enable the
receiving of packets containing alignment errors. As is well
known, for 10 Mbps systems, alignment error is usually
described as dribble error, for one 100 Mbps systems,
alignment error is described as nibble error (4 bit), and for
1000 Mbps systems (i.e., gigabit), alignment error is
described as byte errors. Finally, runt packets selection
check box is used to enable the viewing of packets being
smaller than 64 bytes, and giant packets selection check box
is used to enable viewing of packets being longer than 1518
bytes. Of course, in accordance with one embodiment of the
present invention, a user may modify the standard defined
packet minimums and packet maximums by appropriately
setting the suitable registers within the SUPERMAC core
116 of FIG. 3. Alternatively, these settings may be per-
formed through a suitable software user interface.

Custom filters section 1706 provides the user with the
flexibility of filtering specific portions of a destination

5

10

15

20

25

30

35

40

45

50

55

60

65

36

address 1708, a source address 1710, and a data pattern
1712. By way of example, by appropriately selecting a
portion of the destination address (e.g., masking that portion
of the selected destination address), and by inputting an
appropriate match bit pattern, the user may filter out the
appropriate information for performing management and
diagnostics operations. Accordingly, the user may also mask
and match more than one portion of a destination address. As
shown, the user may mask and match two portions of a
destination and source address.

However, it should be understood that the user interface
may be extended to allow more defined masking and match-
ing operations in accordance with a user’s needs. For a data
pattern 1712, the user may also select an appropriate offset
from a suitable packet beginning point (i.e., usually a 16 bit
offset) by inputting the appropriate information in the cor-
responding fields. Once an appropriate offset is selected, the
user may again identify a mask and a match for the data
pattern being filtered.

As used herein, reference to the IEEE 802.3 standard shall
be understood to include all current IEEE 802.3 standards,
including: (a) IEEE 802.3u standard (100 Mbps-Fast
Ethernet) IEEE std 802.3u-1995; (b) IEEE 802.3z standard
(1000 Mbps-Gigabit Ethernet); and (c¢) ISO/IEC 8802-3,
ANSI/IEEE Std 802.3 (fifth edition 1996). All above iden-
tified standards are hereby incorporated by references.

The present invention may be implemented using any
type of integrated circuit logic or software driven computer-
implemented operations. By way of example, a hardware
description language (HDL) based design and synthesis
program may be used to design the silicon-level circuitry
necessary to appropriately perform the data and control
operations in accordance with one embodiment of the
present invention. By way of example, a VHDL® hardware
description language available from IEEE of New York,
N.Y. may be used to design an appropriate silicon-level
layout. Although any suitable design tool may be used,
another layout tool may include a hardware description
language “Verilog®” tool available from Cadence Design
Systems, Inc. of Santa Clara, Calif.

The invention may also employ various computer-
implemented operations involving data stored in computer
systems. These operations are those requiring physical
manipulation of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred,
combined, compared, and otherwise manipulated. Further,
the manipulations performed are often referred to in terms,
such as producing, identifying, determining, or comparing.

Any of the operations described herein that form part of
the invention are useful machine operations. The invention
also relates to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
the required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various gen-
eral purpose machines may be used with computer programs
written in accordance with the teachings herein, or it may be
more convenient to construct a more specialized apparatus
to perform the required operations. An exemplary structure
for the invention is described below.

FIG. 18 is a block diagram of an exemplary computer
system 1800 for carrying out the processing according to the
invention. The computer system 1800 includes a digital
computer 1802, a display screen (or monitor) 1804, a printer
1806, a floppy disk drive 1808, a hard disk drive 1810, a
network interface 1812, and a keyboard 1814. The digital

6,108,713

37

computer 1802 includes a microprocessor 1816, a memory
bus 1818, random access memory (RAM) 1820, read only
memory (ROM) 1822, a peripheral bus 1824, and a key-
board controller 1826. The digital computer 1800 can be a
personal computer (such as an IBM compatible personal
computer, a Macintosh computer or Macintosh compatible
computer), a workstation computer (such as a Sun Micro-
systems or Hewlett-Packard workstation), or some other
type of computer.

The microprocessor 1816 is a general purpose digital
processor which controls the operation of the computer
system 1800. The microprocessor 1816 can be a single-chip
processor or can be implemented with multiple components.
Using instructions retrieved from memory, the microproces-
sor 1816 controls the reception and manipulation of input
data and the output and display of data on output devices.
According to the invention, a particular function of micro-
processor 1816 is to assist in the packet processing and
network management tasks.

The memory bus 1818 is used by the microprocessor 1816
to access the RAM 1820 and the ROM 1822. The RAM
1820 is used by the microprocessor 1816 as a general storage
area and as scratch-pad memory, and can also be used to
store input data and processed data. The ROM 1822 can be
used to store instructions or program code followed by the
microprocessor 1816 as well as other data.

The peripheral bus 1824 is used to access the input,
output, and storage devices used by the digital computer
1802. In the described embodiment, these devices include
the display screen 1804, the printer device 1806, the floppy
disk drive 1808, the hard disk drive 1810, and the network
interface 1812. The keyboard controller 1826 is used to
receive input from keyboard 1814 and send decoded sym-
bols for each pressed key to microprocessor 1816 over bus
1828.

The display screen 1804 is an output device that displays
images of data provided by the microprocessor 1816 via the
peripheral bus 1824 or provided by other components in the
computer system 1800. The printer device 1806 when oper-
ating as a printer provides an image on a sheet of paper or
a similar surface. Other output devices such as a plotter,
typesetter, etc. can be used in place of, or in addition to, the
printer device 1806.

The floppy disk drive 1808 and the hard disk drive 1810
can be used to store various types of data. The floppy disk
drive 1808 facilitates transporting such data to other com-
puter systems, and hard disk drive 1810 permits fast access
to large amounts of stored data.

The microprocessor 1816 together with an operating
system operate to execute computer code and produce and
use data. The computer code and data may reside on the
RAM 1820, the ROM 1822, or the hard disk drive 1820. The
computer code and data could also reside on a removable
program medium and loaded or installed onto the computer
system 1800 when needed. Removable program mediums
include, for example, CD-ROM, PC-CARD, floppy disk and
magnetic tape.

The network interface 1812 is used to send and receive
data over a network connected to other computer systems.
An interface card or similar device and appropriate software
implemented by the microprocessor 1816 can be used to
connect the computer system 1800 to an existing network
and transfer data according to standard protocols.

The keyboard 1814 is used by a user to input commands
and other instructions to the computer system 1800. Other
types of user input devices can also be used in conjunction
with the present invention. For example, pointing devices

10

15

20

25

30

40

45

50

55

60

65

38

such as a computer mouse, a track ball, a stylus, or a tablet
can be used to manipulate a pointer on a screen of a
general-purpose computer.

The invention can also be embodied as computer readable
code on a computer readable medium. The computer read-
able medium is any data storage device that can store data
which can be thereafter be read by a computer system.
Examples of the computer readable medium include read-
only memory, random-access memory, CD-ROMs, mag-
netic tape, optical data storage devices. The computer read-
able medium can also be distributed over a network coupled
computer systems so that the computer readable code is
stored and executed in a distributed fashion.

Although the foregoing invention has been described in
some detail for purposes of clarity of understanding, it will
be apparent that certain changes and modifications may be
practiced within the scope of the appended claims. It should
be understood that the various processing functions
described above may be implemented both in silicon as
hardware integrated circuits, or as software code that may be
stored and retrieved from any suitable storage medium. By
way of example, such storage mediums may include a disk
drive, a hard drive, a floppy disk, a server computer, a
remotely networked computer, etc.

In addition, it should be understood that the above
described features and functionalities are fully downward
compatible to 10 Mbps Ethernet systems and 100 Mbps fast
Ethernet systems and associated Asynchronous Transfer
Mode (ATM) systems. Of course above described embodi-
ments also apply to switched, and non-switched, and full/
half duplex network systems. Accordingly, the present
embodiments are to be considered as illustrative and not
restrictive, and the invention is not to be limited to the details
given herein, but may be modified within the scope and
equivalents of the appended claims.

What is claimed is:

1. A media access controller, comprising:

a transmit media access controller configured to process
out-going packet data that is received from an upper
layer for transmission to a physical layer, at least part
of the processing being alterable by control information
received while the out-going packet data is being
processed,;

a receive media access controller configured to process
in-coming packet data that is received from the physi-
cal layer for transmission to the upper layer, at least part
of the processing being alterable by control information
received while the in-coming packet data is being
processed,

a transmit multi-packet queue device for receiving the
out-going packet data from the upper layer before being
passed to the transmit media access controller;

a receive multi-packet queue device for receiving the
in-coming packet data that is received by the receive
media access controller; and

a media access controller manager interfacing with the
transmit and receive media access controllers, the
media access controller manager being responsible for
managing the flow of packet data through the transmit
and receive multi-packet queue devices.

2. A media access controller comprising:

a transmit media access controller configured to process
out-going packet data that is received from an upper
layer for transmission to a physical layer;

a receive media access controller configured to process
in-coming packet data that is received from the physi-
cal layer for transmission to the upper layer;

6,108,713

39

transmit multi-packet queue device for receiving the

out-going packet data from the upper layer before being

passed to the transmit media access controller;

a receive multi-packet queue device for receiving the
in-coming packet data that is received by the receive
media access controller;

a media access controller manager interfacing with the

transmit and receive media access controllers, the

media access controller manager being responsible for
managing the flow of packet data through the transmit
and receive multi-packet queue devices; and

parallel event processor for processing management

information and control information in parallel with the

processing of packet data through the transmit media
access controller and the receive media access control-
ler.

3. Amedia access controller as recited in claim 2, wherein
the parallel event processor includes a packet buffer for
storing simple network management protocol information,
and remote monitoring information that is used to charac-
terize network traffic statistics.

4. A media access controller as recited in claim 2, wherein
the parallel event processor includes programmable counters
for storing information related to new network processing
events and statistics.

5. A media access controller as recited in claim 2, further
comprising a first internal stream processor for processing
packet data being transferred between the transmit multi-
queue device and the transmit media access controller, the
first internal stream processor also being configured to
process packet data being transferred between the receive
media access controller and the receive multi-queue device.

6. A media access controller as recited in claim 5, wherein
said parallel event processor further comprises a second
internal micro-RISC stream processor configured to selec-
tively filter packet data being processed through the first
internal micro-RISC stream processor, wherein the selective
filtering provides packet data for processing management
requests.

7. A media access controller as recited in claim 6, wherein
the second internal micro-RISC stream processor is config-
ured to receive selected packet data from the transmit media
access controller and the receive media access controller for
processing management requests.

8. Amedia access controller as recited in claim 7, wherein
the second internal micro-RISC stream processor stores the
selected packet data in statistical counters contained within
the parallel event processor.

9. A media access controller as recited in claim 8, further
comprising transmit and receive network flow managing
device controllers, the transmit network flow managing
device controller being in communication between the trans-
mit multi-packet queue device and the media access con-
troller manager, the receive network flow managing device
controller being in communication between the receive
multi-packet queue device and the media access controller
manager.

10. Amedia access controller as recited in claim 9, further
including a network data bus interface controller for com-
municating packet data information between the transmit
and receive multi-packet queue devices and a network data
system bus.

11. A media access controller as recited in claim 10,
wherein the network data bus interface controller is in
communication with the media access controller manager.

12. Amedia access controller as recited in claim 9, further
including a streaming control bus interface controller for

o

o

10

15

20

25

30

35

40

45

50

55

60

65

40

communicating between the parallel event processor and a
management/control bus that is separate from a network data
system bus.

13. A network interface system comprising:

a media access controller for processing transmit data
received an upper layer and transmitting the processed
transmit data to a lower layer, processing receive data
received from the lower layer and transmitting the
processed receive data to the upper layer, the media
access controller being configured to monitor the flow
of data between the upper and lower layers;

a data bus for communicating data and data control
information between the upper layer and the media
access controller; and

a management control bus for communicating manage-
ment control information between the upper layer and
the media access controller, the management control
bus communicating independently of the data bus.

14. A network interface system, comprising:
a media access controller for processing transmit data
received an upper layer and transmitting the processed
transmit data to a lower layer, processing receive data
received from the lower layer and transmitting the
processed receive data to the upper layer, the media
access controller being configured to monitor the flow
of data between the upper and lower layers;

data bus for communicating data and data control

information between the upper layer and the media

access controller;

management control bus for communicating manage-

ment control information between the upper layer and

the media access controller, the management control
bus being independent of the data bus:

I

I

a transmit controller for processing the transmit data to be
transferred to the lower layer, the processing including
encapsulating the transmit data with at least one header;

a receive controller for processing the receive data com-
municated from the lower layer that is connected to a
physical network, the processing including stripping at
least one header and communicating the receive data to
the upper layer; and

a parallel event processor coupled to the control bus for
processing management tasks.

15. A network interface system as recited in claim 14

wherein the media access controller further includes:

a data management unit for interfacing with the transmit
controller and the receive controller, the transmit con-
troller and the receive controller being configured to
communicate data through the first bus;

a first processor for filtering selected data being commu-
nicated from an upper layer to the transmit controller,
and filtering selected data that is communicated to the
upper layer from the receive controller;

a second processor configured to receive the selected data
filtered by the first microprocessor and communicate
the filtered data through the second bus.

16. A media access controller as recited in claim 13,
wherein the first bus is in communication with a transmit
buffer and a receive buffer, the transmit buffer and the
receive buffer are configured to store data being transferred
out through the transmit controller and data being trans-
ferred in through the receive controller.

17. A media access controller as recited in claim 16,
wherein the transmit buffer and receive buffer are configured
to store a plurality of data packets.

6,108,713

41

18. A media access controller as recited in claim 17,
further comprising:

a transmit flow manager being in communication with the
transmit buffer for controlling the transfer of the plu-
rality of data packets stored in the transmit buffer; and

a receive flow manager being in communication with the
receive buffer for controlling the transfer of the plural-
ity of data packets stored in the receive buffer.

19. A media access controller as recited in claim 18,
wherein the transmit flow manager is configured to number
each of the plurality of data packets stored in the transmit
buffer in a circular sequence numbering scheme.

20. A media access controller as recited in claim 18,
wherein the receive flow manager is configured to number
each of the plurality of data packets stored in the receive
buffer in a circular sequence numbering scheme.

21. A media access controller as recited in claim 19,
wherein the transmit flow manager is configured instruct the
transmit buffer to re-transmit selected data packets stored in
the transmit buffer to the transmit controller when a collision
is detected.

22. A media access controller as recited in claim 19,
wherein packet data stored in the transmit buffer is not
flushed until all packets associated with the selected circular
sequence numbering scheme have been transmitted.

23. A media access controller as recited in claim 22,
wherein the media access controller is programmable
through a graphical user interface.

24. A method for making a media access controller for
processing data transmit requests, data receive requests and
monitoring data flow through the media access controller,
the media access controller being configured to communi-
cate with an upper layer and a lower layer, the method
comprising:

10

15

20

25

42

integrating a first bus for transferring data into and out of

the media access controller; and

integrating a second bus for communicating management

control requests to the media access controller while
the transferring of data is in progress to thereby alter
such transferring of data, the second bus being coupled
to a parallel events processor containing a micropro-
cessor for filtering selected data that is being trans-
ferred through the first bus.

25. A method for making a media access controller for
processing data transmit requests, data receive requests and
monitoring data flow through the media access controller,
the media access controller being configured to communi-
cate with an upper layer and a lower layer, the method
comprising

integrating a first bus for transferring data into and out of

the media access controller;

integrating a second bus for communicating management

control requests to the media access controller while
the transferring of data is in progress the second bus
being coupled to a parallel events processor containing
a microprocessor for filtering selected data that is being
transferred through the first bus; and

integrating a transmit controller and a receive controller to

be in communication with the first bus;

integrating a management processor for controlling the

operations of the transmit controller and the receive
controller.

26. A method for making a media access controller as
recited in claim 25, wherein the transmit controller includes
a plurality of data modifying registers for controlling the
character of the data being transferred through the first bus.

	Abstract
	Drawings
	Description
	Claims

